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Poglavje 1

Uvod

1.1 Kvalitativno ali kvantitativno?
Predstavljajmo si srednjeveškega zdravnika pri delu. Vse svoje pripomoč‑
ke in zdravila ima spravljene v eni zdravniški torbi. Ko pristopi k pacientu,
ga najprej pozorno pogleda v oči, mu z roko potipa čelo ter razišče, ali je
bolnik vroč, bled ali morda poten. Nato se na osnovi teh kvalitativnih opa‑
žanj odloči o načinu zdravljenja. Od srednjega veka do danes se je marsikaj
spremenilo. Zdravnik danes svojega pacienta včasih niti ne pogleda v oči,
ampak ga kar takoj pošlje na laboratorijske preiskave. Po opravljenih prei‑
skavah se bolnik k zdravniku vrne s šopom izvidov, na katerih je množica
izmerjenih parametrov in grafov: vrednost krvnega tlaka, vrednost hole‑
sterola, saturacija krvi s kisikom, EKG... Zdravnikova izbira načina zdra‑
vljenja nato v veliki meri temelji prav na teh izmerjenih številkah in grafih.
Z drugimi besedami, sodobna medicina je vse bolj kvantitativna in zdravnik
se mora za ustrezno obravnavo bolnika tudi dobro znajti med številkami
in grafi.

Sodobna kvantitativna znanost temelji na natančnih opazovanjih, po‑
novljivih meritvah ter matematični analizi eksperimentalnih rezultatov.
Eden najbolj znanih pionirjev kvantitativne metode je bil Galileo Galilei, o
katerem smo se učili že pri fiziki v osnovni šoli, manj pa je znano, da so se
ob koncu 16. stoletja v severni Italiji hkrati s fiziko izoblikovale tudi osta‑
le znanosti, med njimi tudi medicina. Pravzaprav je tudi Galileo najprej
študiral medicino ter se je šele kasneje usmeril v fiziko in astronomijo. Na
Univerzi v Padovi je bil njegov kolega tudi v Kopru rojeni Santorio Santo‑
rio, ki velja za začetnika fiziologije in je razvil vrsto inštrumentov za merje‑
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Slika 1.1: Sodobniki Galileo Galilei (1564–1642), Santorio Santorio (1561–1636) in
William Harvey (1578–1657). Prvi je bil eden od začetnikov uporabe kvantitativ‑
nih metod v fiziki, druga dva v medicini. V spodnji vrsti sta prikazana Santorijeva
inštrumenta pulsilogium, s katerim je meril srčni utrip, ter eden njegovih prvih ter‑
mometrov. Spodaj desno je prikazan odlomek iz angleškega prevoda Harveyeve
knjige De motu cordis, v katerem navaja računske in eksperimentalne argumente
za obstoj krvnega obtoka (viri slik [1]).

nje fizioloških parametrov, med drugim tudi prvi termometer za merjenje
telesne temperature in pulsilogium za merjenje srčnega utripa (slika 1.1).
V Padovi je takrat študiral tudi angleški zdravnik William Harvey, ki je
kasneje na osnovi natančnega opazovanja, eksperimentov in matematične
analize pretoka krvi skozi srce, t. i. minutnega volumna srca, odkril obstoj
krvnega obtoka. Njegova knjigaDemotu cordis (1628), v kateri je predstavil
svoje raziskave, velja za temeljno delo sodobne medicine.

Že v časih pred Harveyem so bili zdravniki dobri anatomi in so se za‑
vedali pomena srca, žil in krvi, vendar še niso imeli mikroskopov in zato
niso poznali mikroskopsko tankih kapilar, ki povezujejo arterijski in venski
obtok. Pri razumevanju krvožilja so se tako naslanjali na antično razlago,
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da kri neprestano nastaja v jetrih ter ponika v ostalih organih. Harveyjev
razmislek in račun, ki sta antično razlago postavila pod vprašaj, sta bila z
današnjega stališča izjemno preprosta, v tistih časih pa nič manj kot revo‑
lucionarna: iz anatomije srca je ocenil, da srce ob vsakem utripu prečrpa
približno 2 unči krvi, kar je sodobnih enotah malo manj kot 60 ml. Ko je to
številko pomnožil s številom srčnih utripov v eni uri, je izračunal, da srce
v eni uri prečrpa več kot 200 litrov krvi oziroma približno trikratnik celo‑
tne človekove teže! Ker si je težko predstavljati, da toliko snovi vsako uro
nastane v jetrih in hkrati ponikne v organih, je sklepal, da kri ne nastaja in
ponika, temveč kroži. Preprosta kvantitativna meritev in izračun sta torej
sprožila novo medicinsko odkritje in nakazala začetek novega obdobja v
medicini.

Pogled v oči in pogovor s pacientom bosta vedno ostala najboljša osnov‑
na medicinska metoda, vseeno pa so danes tudi številke nedeljiv del me‑
dicine. Dobra medicina je tista, ki je podprta z dokazi, in ravno kvanti‑
tativna analiza je eden od temeljev sodobnega znanstvenega dokaza, saj
omogoča objektivnost in primerljivost različnih meritev. Številke in gra‑
fe vsakodnevno srečujemo tako v kliniki, kot tudi v osnovnih raziskavah,
npr. v znanstvenih člankih, ki opisujejo delovanje novih zdravil. Eden od
predpogojev za uspešno razumevanje sodobne medicine je torej dobro po‑
znavanje osnovnih orodij kvantitativne znanosti. V prvem poglavju bomo
zato osvežili naše znanje o numeričnem zapisovanju količin in risanja gra‑
fov, ponovili osnovne matematične funkcije in enačbe. Pozorni bralec bo
ugotovil, da je vsebina tega poglavja pravzaprav bolj matematika kot fizi‑
ka. To ni naključje, saj je matematika pač abeceda sodobnih kvantitativnih
znanosti.

1.2 Zapisovanje količin, enote
Pri zapisovanju količin ni pomembna le številka, ampak tudi enota, v kate‑
ri količino zapišemo. Višina 5 metrov in volumen 5 litrov sta oba »5«, pa
hkrati dve povsem različni količini in ju ne moremo seštevati kot navadnih
številk. V Sloveniji so pacienti s temperaturo 36 zdravi, v ZDA pa pri isti
vrednosti ne bi bili več med živimi, saj tam telesno temperaturo merijo v
stopinjah Fahrenheitov in 36 °F ustreza približno našim 2 °C. Da se izogne‑
mo neprijetnim nesporazumom ali celo usodnim napakam, moramo biti
torej pri zapisu količin pozorni na oboje, na številko in na enoto.

Isto količino lahko zapišemo z različnimi enotami. Dolžino mezinca na
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roki avtorja tega teksta lahko npr. povsem ekvivalentno zapišemo na več
načinov:

7,62 cm = 0,0762m = 7,62 · 104 μm = 3palce ,

pri čemer smo upoštevali, da je starinska enota »palec« (inča) enaka 2,54 cm.
Katerega od zgornjih zapisov uporabimo, je odvisno od situacije – v ZDA
bi verjetno uporabili zadnjega, saj tam kratke dolžine merijo v palcih.

Velikostni red uporabljene enote lahko prilagodimo s pomočjo standar‑
dnih predpon: centimeter npr. pomeni stotina metra. Seznam najbolj po‑
gostih predpon je prikazan v tabeli 2 v dodatku na strani 375. Poleg tega
pri matematičnem opisovanju pride prav tudi grška abeceda, ki je prika‑
zana v tabeli 3 v dodatku na strani 376. Opozorimo naj še, da v nekaterih
državah namesto decimalne vejice uporabljajo decimalno piko, kar lahko
povzroči dodatne nesporazume. Huda zmeda nastane, če številke z deci‑
malno vejico vnašamo v osebni računalnik, ki je nastavljen na ameriške
nastavitve, kjer uporabljajo decimalno piko. Glede na razširjenost raču‑
nalnikov se boste z zmedo glede decimalne vejice in pike v prihodnosti
zagotovo večkrat srečali.

Po dogovoru naj bi vsi uporabljali standardizirane enote, določene v
mednarodnem sistemu enot z okrajšavo SI (iz francoščine, Système Internaci‑
onal d’Unités), v katerem so osnovne enote za maso (kg), dolžino (m), čas
(s), električni tok (A), temperaturo (K), množino snovi (mol), in svetilnost
(cd). Ker pa je navada železna srajca, v mnogih primerih še vedno upora‑
bljamo stare enote. Za merjenje krvnega tlaka tako ponavadi ne uporablja‑
mo SI enote paskal (Pa = kg/ms2), ampak enoto »milimeter živega srebra«
(1 mmHg ≈ 133 Pa), pa še to enoto v pogovoru pogosto kar izpustimo in
se zanašamo na to, da bomo enoto ugotovili iz konteksta. Če nam sporoči‑
jo, da ima pacient krvni tlak 120/80, je z njim verjetno vse v redu, saj nam
tlaka verjetno niso sporočili v paskalih. Podobnih primerov je še več in ne
preostane nam drugega, kot da smo na enote vseskozi pozorni in jih nikoli
ne privzamemo brez razmisleka.

Da je pazljivost pri uporabi enot izjemno pomembna, priča tudi nasle‑
dnja zgodba. Leta 1999 je ameriška vesoljska agencija NASA na planet
Mars poslala dragocen raziskovalni satelit Mars Climate Orbiter, ki pa je
ob vstopu v Marsovo atmosfero nesrečno zgorel in razpadel. In kaj je pov‑
zročilo to nesrečo? Preprosto: program v računalniku na satelitu je narobe
izračunal parametre pristanka, saj je bil napisan za podatke v SI enotah,
inženirji pa so mu jih vpisali v miljah. V medicini je pazljivost pri enotah
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še posebej pomembna, saj je razlika med mg, μg in unčami zdravila lahko
razlika med življenjem in smrtjo pacienta.

Pogosto moramo enote iz enega zapisa pretvarjati v drugega. To naj‑
lažje naredimo tako, da v računu staro enoto nadomestimo z ustrezno ko‑
ličino nove enote, pri čemer pridno uporabljamo ulomkovo črto. Spodaj
navajamo štiri tipične primere pretvarjanja enot.

Primer 1.1: pretvarjanje enot

Hitrost 60 km/h pretvorimo v m/s:

60km
h

=
60 · 1000m

3600 s
=

600m
36 s

= 16,7
m
s

.

Primer 1.2: včasih pretvarjanje v SI enote ni potrebno

Izračunajmo, kolikšno pot v pol ure naredi avtomobil, ki se vozi s hitrostjo 60 km/h.
Je v tem primeru sploh potrebno enote iz km in h pretvarjati v SI enoti m in s? Se‑
veda ne, saj lahko kar brez pretvarjanja enot na pamet izračunamo, da je prevožena
pot enaka 30 km. Pri računanju torej ravnamo po pameti in enot po nepotrebnem
ne pretvarjamo v SI enote.

Primer 1.3: enote v imenovalcu zahtevajo pazljivost

Še posebej moramo biti pazljivi, če je enota v imenovalcu. Čeprav npr. brez razmi‑
šljanja vemo, da je 1 m enak 100 cm, pa moramo biti pri pretvorbi iz m−1 v cm−1

zelo pozorni:

1m−1 =
1

m
=

1

100 cm
= 0,01 cm−1 .

Če bi na hitro napisali, da je 1 m−1 enako 100 cm−1, bi se torej zmotili kar za faktor
10000!

Primer 1.4: enote za kote
Enoto imajo tudi koti, na kar moramo biti pazljivi pri vnosu kotov v kalkulator.
Najpogostejši enoti za opisovanje kotov sta stopinje (ang. okrajšava deg) ter radiani
(ang. okrajšava rad). Pravemu kotu ustreza 90° oz. π/2 radianov, polnemu krogu
pa 360° oz. 2π radianov, pri čemer besedo »radian« največkrat izpustimo in rečemo
npr. kar »pravi kot je enak π/2.« Če je kalkulator nastavljen na »deg«, vrednost
pravega kota torej vtipkamo kot številko 90, če pa je nastavljen na »rad«, pa kot
številko 1,57 (= π/2).
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1.3 Osnovne matematične funkcije
V tem razdelku bomo ponovili lastnosti najosnovnejših matematičnih funk‑
cij, ki jih pogosto srečamo pri opisovanju pojavov v naravi. Grafi teh funk‑
cij so predstavljeni na sliki 1.2.

1

1

1 1

-1 -1

y0

y

y1 y1y2 y2

Dx
y /	y 	=	a2	 1

Dx
y /	y 	=	a1	 2

y

y

−x
y	=	a

2
y	=	x

−x
y	=	y 	(1	-	a )0

y	= 1 / x

y	=	cos(x)y	=		sin(x)

x
y	=	a

y	=	k	x	+	A

y	=	ln (x)a

y

y

y y

y

y

x xx

x

x x x1 a

1

x x

A

Dx

Dx Dx

k	=	Dy	/ Dx
Dy

p p2p 2p

A

D

G

B

E

H

C

F

I

Slika 1.2: Matematične funkcije, ki jih najpogosteje srečamo pri opisovanju po‑
vezav med količinami v naravi. A) Linearna funkcija. B) Obratno sorazmerje.
C) Kvadratna funkcija. D) Naraščajoča eksponentna funkcija. E) Padajoča ekspo‑
nentna funkcija. F) Eksponentno naraščanje od nič proti končni vrednosti. G)
Logaritemska funkcija. H) Sinusna funkcija. I) Kosinusna funkcija.
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1.3.1 Premo sorazmerje in linearna odvisnost
Najpreprostejša zveza med dvema količinama je premo sorazmerje. Izraz
»y je sorazmeren x« zapišemo z y ∝ x, če pa smo še bolj natančni, pa z
enačbo y = kx, pri čemer konstanto k imenujemo naklonski koeficient.

Reševanju problemov s sorazmernimi odvisnostmi je enostavno, saj pri
njih deluje sklepni (križni) račun. Zavedati pa se moramo, da to preprosto
orodje tudi hitro odpove: npr. že pri linearni funkciji, ki se od premega
sorazmerja loči le po konstanti A in se zapiše kot

y = kx+ A . (1.1)

Graf linearne funkcije je prikazan na sliki 1.2A, prikaz njene uporabe v
praksi pa v primeru 1.5.

Tako pri premem sorazmerju kot pri linearni funkciji velja: če se x po‑
veča za ∆x, se y spremeni za ∆y ne glede na vrednost x. Naklonski ko‑
eficient je lahko pozitiven, nič ali negativen, vendar je povsod enak in ga
lahko izračunamo kot k = ∆y/∆x.

1.3.2 Obratno sorazmerje
Bližnji sorodnik premega sorazmerja je obratno sorazmerje, y = 1/x, kar
preberemo »y je obratno sorazmeren x« (slika 1.2B). Če je lahko linearna
odvisnost naraščajoča ali padajoča, imamo pri obratnem sorazmerju pona‑
vadi v mislih le padajoči del: če se x poveča za nek faktor, se bo y za isti
faktor zmanjšal.

1.3.3 Potenčne odvisnosti
V splošnem tako odvisnost zapišemo kot y = xn (slika 1.2C). V praksi naj‑
večkrat srečamo potenci 2 in 3, saj sta povezani z geometrijo: površina te‑
lesa je sorazmerna kvadratu njegovega premera (S ∝ d2), prostornina pa
tretji potenci (V ∝ d3). Značilnost teh potenčnih odvisnosti je, da narašča‑
jo precej hitreje od linearne: če neko telo ob nespremenjeni obliki zraste za
faktor 1,5, se mu površina poveča za faktor (1,5)2 = 2,25, prostornina pa
za faktor (1,5)3 ≈ 3,4.

Obratna funkcija potenčni je korenska: y = xn ⇔ x = n
√
y = y1/n.
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Primer 1.5: linearna funkcija in pretvarjanje iz °C v °F

Izračunajmo, koliko stopinj Fahrenheita ustreza temperaturama 37 °C in 42 °C!
Temperaturni lestvici sta definirani tako, da med stopinjami Fahrenheita in stopi‑
njami Celzija velja linearna odvisnost, pri čemer je ledišče (0 °C) pri 32 °F, vrelišče
vode (100 °C) pa pri 212 °F.
Če se naloge lotimo s sklepnim računom (križnim računom), hitro ugotovimo, da
ne pridemo daleč, saj pridemo do deljenja z 0:

0 °C ... 32 °F
37 °C ... x

In tako smo se naučili prve lekcije: sklepni račun (križni račun) deluje le v primeru,
če sta količini premo sorazmerni, tj. če sta linearno odvisni in obe hkrati enaki
nič.
V našem primeru temperatura pri 0 °C ni enaka 0 °F, zato sklepni račun odpo‑
ve. Naloge se zato lotimo počasi. Če temperaturo v Fahrenheitih označimo s TF ,
temperaturo v stopinjah Celzija pa s TC , lahko linearno odvisnost med obema za‑
pišemo kot (enačba 1.1):

TF = k TC +A .

T [°C]

T [°F]

0 20-20 40 60 80 100

32

212

100

Če si to odvisnost narišemo in jo primerjamo s sliko 1.2A, ugotovimo, da je vre‑
dnost konstante A enaka 32°F, vrednost naklonskega koeficienta k pa je

k =
∆y

∆x
=

212 °F− 32 °F
100 °C− 0 °C

= 1,8
°F
°C

.

Ko poznamo konstanti k in A, lahko s pomočjo linearne enačbe takoj izračunamo,
da temperaturi 37 °C ustreza:

TF = 1,8
°F
°C
· 37 °C + 32 °F = 98,6 °F .

Z enakim računom izračunamo še, da temperaturi 42 °C ustreza 107,6 °F. Ti dve
temperaturi v stopinjah Fahrenheitov si je vredno zapomniti, saj ju bomo v ameri‑
ški literaturi pogosto srečali.
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1.3.4 Eksponentna odvisnost
V naravi se pogosto zgodi, da je hitrost spreminjanja neke količine soraz‑
merna velikosti količine same. V takem primeru se količina spreminja ek‑
sponentno. Nazoren primer naraščajoče eksponentne funkcije srečamo pri
delitvi bakterij, ki imajo dovolj hrane in prostora. Ker iz vsake bakterije ob
delitvi nastaneta dve novi, bo število na novo nastalih bakterij v neki ča‑
sovni enoti sorazmerno številu obstoječih. Število bakterij se bo torej v tem
primeru povečevalo eksponentno. Izločanje snovi iz telesa lahko po drugi
strani pogosto opišemo s padajočo eksponentno funkcijo: število molekul
neke snovi, ki se izločijo v določeni časovni enoti, je pogosto sorazmerno
koncentraciji te snovi v telesu in zaradi tega tudi številu molekul te snovi
v telesu.

Naraščajočo eksponentno odvisnost zapišemo kot y = ax, padajočo ek‑
sponentno pa kot y = a−x (slika 1.2D in E), pri čemer se konstanta a imenuje
osnova. Pri tem si je vredno zapomniti, da lahko isto eksponentno odvi‑
snost zapišemo z različnimi osnovami, najpogosteje uporabimo osnovo 2,
10 ali pa »naravno osnovo« e (e je konstanta, katere vrednost je enaka pri‑
bližno 2,7182...). Uporaba različnih osnov za opisovanje iste eksponentne
odvisnosti je prikazana v primeru 1.6.

Pri računanju z eksponenti si pomagamo z zvezami:

a0 = 1 (1.2)
a1 = a (1.3)

a−x =
1

ax
(1.4)

(ax)y = axy (1.5)
axbx = (ab)x (1.6)
ax+y = axay (1.7)

Iz zadnje od zgornjih zvez lahko izpeljemo pomembno lastnost eksponen‑
tne odvisnosti: če se x spremeni za ∆x, se vrednost y spremeni za enak
faktor, ne glede na vrednost x. Vrednost tega faktorja je enaka a∆x.

Vrednost naraščajoče eksponentne funkcije z večanjem x narašča vedno
hitreje in gre proti neskončnosti, vrednost padajoče eksponentne funkcije
pa vse počasneje in se počasi bliža vrednosti 0. Pogosto pa eksponentno
funkcijo srečamo tudi, ko količina najprej hitro narašča, nato pa se hitrost
naraščanja zmanjšuje, vrednost pa se približuje neki končni vrednosti. Ta‑
ko se npr. spreminja temperatura mrzlega predmeta, ki ga prestavimo na
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toplo. Z enačbo tako odvisnost zapišemo kot y = y0(1 − a−x), prikazana
pa je na sliki 1.2F.

1.3.5 Logaritemska funkcija
Logaritem je obratna funkcija eksponentne: če je x = ey, potem je y =
lnx. Podobno kot pri eksponentni funkciji, so tudi pri logaritemski možne
različne osnove, pri čemer naravni logaritem ponavadi zapišemo kot ln,
desetiškega kot log, dvojiškega pa kot log2.

Pri računanju z logaritmi nam pomaga zveza

ln 1 = 0 (1.8)
ln ab = ln a+ ln b (1.9)
ln ax = x ln a (1.10)

Iz zadnje od zgornjih zvez vidimo, da je vrednost logaritma sorazmer‑
na vrednosti v eksponentu, zaradi česar logaritem pogosto uporabljamo
pri opisovanju količin z velikim razponom možnih vrednosti. Lep primer
uporabe logaritemske lestvice je vrednost pH, ki meri kislost oziroma ba‑
zičnost raztopine in je povezana s koncentracijo (aktivnostjo) ionov H+ v
raztopini. Koncentracije ionov H+ v tipičnih raztopinah so lahko zelo raz‑
lične, npr. od približno 10−11 mol/l v milnici do več kot 10−3 mol/l v že‑
lodčni kislini. Glavne razlike v koncentraciji se torej skrivajo v vrednostih
v eksponentu, zato vrednost pH definiramo z logaritemsko lestvico:

pH = − log[H+] , (1.11)

pri čemer koncentracijo po dogovoru podajamo v mol/l. Milnica ima pH
torej 11, želodčna kislina pa 3, kar je za uporabo veliko bolj praktično od
zapisa z eksponenti. Vrednost pH navadne vode je približno 7, kar pomeni
da je koncentracija vodikovih ionov v vodi približno 10−7 mol/l.

1.3.6 Kotne funkcije
Kotne funkcije sin, cos in tan srečamo pri geometriji, ko računamo razmerja
stranic v pravokotnem trikotniku:
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sinα =
a

h
(1.12)

cosα =
b

h
(1.13)

tanα =
sinα
cosα

=
a

b
(1.14)

a

b

h

α

Funkciji y = sinx in y = cosx sta prikazani na slikah 1.2H in 1.2I.
Vidimo, da je njuna največja vrednost 1 najmanjša pa −1. Pri kotu 0 je
vrednost sinusa enaka 0, vrednost kosinusa pa 1.

Kotne funkcije so periodične, velja npr. sin(x + 2π) = sin(x), zato jih
pogosto uporabljamo za opisovanje periodičnih pojavov.

1.3.7 Enote v enačbah in matematičnih funkcijah
Enote so neločljiv del zapisa količin, zato imajo enačbe s količinami smisel
le, če je na obeh straneh enačaja tudi ista enota. Zapis y = x tako nima
smisla, če je x enak 1 m, y pa je 1 s. Če količine v enačbah med seboj kom‑
biniramo, se bo enako zgodilo tudi z enotami. Če npr. velja k = ∆x/∆t in
je x podan v metrih, t pa v sekundah, bo imel tudi k enoto in sicer m/s.

Nekatere matematične funkcije (npr. eksponentna, logaritemska in ko‑
tne funkcije) delujejo na številih, zato moramo biti pri njihovi uporabi za
opisovanje količin previdni. Vrednost 2x lahko npr. izračunamo, če je x
številka brez enote, ne pa tudi če je x količina z enoto – zapis 21 cm tako
nima smisla. Pri opisovanju naravnih pojavov zato zveze med količinami
ponavadi srečamo v obliki, pri kateri se enote v argumentih funkcij pokraj‑
šajo, npr.

y = y0 ln
x

x0
, y = y0e

−t/τ ali y = y0 sin(ωt) ,

kjer so konstante x0, τ in ω konstante podane v ustreznih enotah, da se
enote v argumentih funkcij pokrajšajo (npr. x0 v m, τ v s in ω v 1/s). Kon‑
stanta y0 ima enako enoto kot količina y, zato je na obeh straneh enačaja
enaka enota. Uporaba eksponente in logaritemske funkcije je podrobneje
predstavljena še v primerih 1.6 in 1.8.

Čeprav naj bi se vedno držali matematično natančnega zapisa, pa kljub
temu v matematičnih funkcijah včasih »pozabimo« na enoto, oz. jo pri
računanju preprosto izpustimo. To lahko naredimo le, če se iz konteksta
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dobro razume, v kateri enoti je bila količina zapisana. En tak primer smo
srečali pri definiciji vrednosti pH (enačba 1.11), kjer je bilo po definiciji po‑
trebno koncentracijo v enačbo vstaviti v enoti mol/l. Če bi koncentracijo
vstavili npr. v mmol/l, bi seveda dobili napačen rezultat.

Primer 1.6: absorpcijski zakon in eksponentno padanje

Poglejmo si primer uporabe eksponentne funkcije v praksi. Zapisali bomo t. i.
absorpcijski zakon oz. Beer‑Lambertov zakon, ki ga bomo kasneje podrobneje obrav‑
navali v poglavju o prehajanju svetlobe skozi raztopine. Absorpcijski zakon pravi,
da pri potovanju svetlobe skozi raztopino njena jakost pada eksponentno s pre‑
potovano razdaljo. V literaturi absorpcijski zakon zapisujejo na več različnih, a
ekvivalentnih načinov:

I(x) = I0e
−µx = I02

−x/x½ = I010
−ϵcx ,

I₀ I(x)

x
pri čemer jakost vpadne svetlobe označimo z I0. Zakon smo zapisali s tremi raz‑
ličnimi osnovami, v vsakem zapisu pa je tudi druga konstanta, s katero opišemo,
kako močno se svetloba absorbira v izbrani raztopini:

• µ je absorpcijski koeficient raztopine,
• x1/2 je razpolovna debelina v raztopini,
• ϵ je ekstinkcijski koeficient raztopine, c pa je njena koncentracija.

Vsi trije zapisi so povsem ekvivalentni, zato lahko uporabljamo katerega koli. V fi‑
ziki se npr. najpogosteje uporablja zapis z naravno osnovo, v kemiji pa z desetiško.
Poglejmo si še nekaj lastnosti zgornjih zapisov.

• Ker morajo biti eksponenti brez enot, lahko iz zgornjih zapisov brez težav
ugotovimo, v kakšnih enotah so podane konstante. Ker se razdalja x pona‑
vadi meri v m, koncentracija pa v mol/l, mora biti enota µ enaka m−1, enota
x½ enaka m, enota ϵ pa enaka l/(m·mol).

• Kaj nam pove vrednost razpolovne debeline x½?
To je ravno razdalja, na kateri se jakost svetlobe zmanjša za polovico. Če
namreč v enačbo vstavimo x = x½, dobimo

I = I02
−1 =

1

2
I0 .

• Za kolikšen faktor se spremeni jakost svetlobe po tem, ko v raztopini pre‑
potuje razdaljo treh razpolovnih debelin?
Na tako vprašanje znamo odgovoriti kar brez uporabe enačb! Vsakič, ko
svetloba po raztopini prepotuje razdaljo enako razpolovni debelini, se nje‑
na jakost prepolovi. Po prepotovanih treh razpolovnih debelinah se bo ja‑
kost svetlobe torej trikrat prepolovila. Ker velja 1

2 ·
1
2 ·

1
2 = 1

8 , se torej po
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prepotovanih treh razpolovnih debelinah jakost svetlobe zmanjša za faktor
8.

• Izračunajmo še zvezo med absorpcijskim koeficientom in razpolovno debe‑
lino. Če v zvezi

I0e
−µx = I02

−x/x½

pokrajšamo I0, obe strani enačbe logaritmiramo ter ob tem upoštevamo
ln am = m ln a, dobimo

ln e−µx = ln 2−x/x½ ⇒ −µx ln e = −x/x½ ln 2 .

Ko na obeh straneh pokrajšamo x in upoštevamo ln e = 1, dobimo zahteva‑
no zvezo

µ =
ln 2

x½
.

Absorpcijski koeficient in razpolovna debelina sta torej obratno sorazmer‑
na. Večja kot je absorpcija v raztopini, večji je njen absorpcijski koeficient in
krajša je razpolovna debelina.

• V biokemiji se največ uporablja zapis z desetiško osnovo, pri čemer kot re‑
zultat meritve največkrat podajo kar absorbanco, ki je definirana kot

A = − log
I

I0
= log

I0
I

= ϵcx

Absorbanca je torej količina brez enote in je kar sorazmerna koncentraciji
raztopine. Če je absorbanca 1, se svetloba na poti skozi raztopino ošibi za
faktor 10, če je absorbanca 2, se ošibi za faktor 100 in tako naprej.
Včasih poleg ekstinkcijskega in absorpcijskega koeficienta vpeljejo še mo‑
larni absorpcijski koeficient, ki podaja absorpcijski koeficient eno‑molarne
raztopine snovi.

• Poglejmo si še primer grafa, ki prikazuje pojemanje intenzitete žarka sve‑
tlobe, ki potuje po namišljeni raztopini. Začetna jakost svetlobe naj bo
I0 = 1W.
Modra črta prikazuje primer za raztopino, v kateri je razpolovna debelina
enaka x½ = 3 cm. Intenziteta se torej na vsake 3 cm prepolovi: pri 3 cm
je I = 0,5W, pri 6 cm je I = 0,25W itd. Absorpcijski koeficient je v tem
primeru enak µ = ln 2

x½
= 0,23 cm−1.
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Rdeča črtkana črta prikazuje primer, ko se koncentracija raztopine trikrat
poveča in je zato absorpcija v raztopini večja. Jakost o zato pada hitreje,
razpolovna debelina se zmanjša na x½ = 1 cm, absorpcijski koeficient pa se
poveča na µ = 0,69 cm−1.
Zvezdici na vodoravni osi označujeta razdaljo, ki je enaka obratni vredno‑
sti absorpcijskega koeficienta – na tej razdalji se jakost svetlobe zmanjša za
faktor e−1 = 1/2,718 ≈ 0,37.

1.4 Grafi, logaritemska skala in linearizacija
Grafi so eno najosnovnejših orodij kvantitativne analize, saj lahko z njimi
nazorno prikažemo odvisnosti med količinami. V tem razdelku si bomo
ogledali trik, pri katerem graf s spretno spremembo skale na oseh naredi‑
mo preglednejši.

Najpogostejša sprememba skale na grafu je logaritemska, ki jo upora‑
bimo za prikazovanje podatkov, katerih vrednosti se raztezajo čez nekaj
redov velikosti (spomnimo se, da smo zaradi enakega razloga tudi za pH
uporabili logaritemsko lestvico). Pri t. i. semi‑log grafih je logaritemska le
ena os, pri log‑log grafih pa sta logaritemski obe osi.

Uporabo logaritemske skale si bomo najbolje ogledali na konkretnem
primeru. Na sliki 1.3 so trije različni prikazi pogostosti pojavljanja raka
trebušne slinavke pri ženskah v Avstraliji. Izziv pri prikazu teh podatkov
je, da se pogostost pojavljanja raka za različne starosti zelo razlikuje: do
40. leta je pogostost pod 1 primerom na 100.000 oseb, do 80. leta pa nara‑
ste na skoraj 100 primerov na 100.000. Če graf narišemo z navadno skalo
(slika 1.3A), je iz njega zato nemogoče razlikovati vrednosti pod 40. letom,
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saj so si vse zelo blizu. Temu se izognemo, če na navpično os nanašamo
logaritemsko skalo, kar lahko naredimo na dva načina: na navpično os na‑
našamo vrednosti log(n) in uporabimo linearno skalo (slika 1.3B), ali pa
uporabimo kar logaritemsko skalo, pri kateri pomožne črte niso ekvidis‑
tantne (slika 1.3C). Drugi prikaz je celo bolj nazoren, saj je pri prvem za
razbiranje vrednosti iz grafa potrebno nekaj možganske telovadbe.
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Slika 1.3: Primer uporabe logaritemske skale. Vsi trije grafi prikazujejo isto od‑
visnost: pogostost pojavljanja raka trebušne slinavke v odvisnosti od starosti (n
označuje število primerov raka na 100.000 oseb, podatki so za ženske v Avstraliji
in so povzeti po [2]). A) Graf z linearnima osema. Iz njega se lepo vidi, koliko
primerov raka je pričakovati pri starostih nad 50 let, podatki za vse nižje starosti
pa so tako blizu ničle, da razlik med njimi iz grafa ne moremo razbrati. B) Iste
podatke narišemo z logaritmiranjem, tj. na navpično os ne nanašamo vrednosti
n, ampak vrednost log(n). Na tem grafu lahko brez težav razlikujemo vrednosti
podatkov na celotnem razponu, a se moramo malo potruditi, da vrednosti pravil‑
no odčitamo. Kolikšna je npr. pogostost raka pri starosti 60 let? C) Graf lahko še
lepše predstavimo z logaritemsko skalo in ustreznimi pomožnimi črtami. Glav‑
ne črte na takem grafu so pri potencah deset, pomožne pa pri ustreznih vmesnih
vrednostih: med 1 in 10 so pomožne črte pri vrednostih 2,3,4 ..., med 10 in 100 so
pomožne črte pri 20, 30, 40 ... Na tem grafu brez težav razberemo, da je vrednost
n pri 60 letih malo nad prvo pomožno črto nad 101, tj. malo nad 20. Tudi z vre‑
dnostmi pri nizkih starostih ni težav: vidimo, da pri 20 letih za rakom trebušne
slinavke zboli 0,2 ženske od 100.000, pri 40 pa malo nad 2 od 100.000.

Obstajajo še bolj zapletene spremembe skale, ki jih včasih uporabimo
za nazoren prikaz ne‑linearnih odvisnosti količin. Poglejmo npr. obratno
sorazmerje in padajočo eksponentno funkcijo na sliki 1.2B oz. 1.2E. Obe
funkciji sta padajoči in na pogled bi težko ločili, katera odvisnost je na ka‑
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terem grafu. Edina funkcija, ki jo že na pogled ločimo od drugih je linearna
funkcija. Pri ne‑linearnih odvisnostih zato včasih spremenimo skalo na osi
z namenom, da se nam na grafu prikaže premica. Postopek imenujemo li‑
nearizacija.

Pri linearizaciji funkcije izvedemo zamenjavo spremenljivk, ki nam omo‑
goči, da tudi zapletene odvisnosti na grafih prikažemo kot linearne. Obra‑
tno sorazmerje y = a/x npr. lineariziramo tako, da namesto y v odvisnosti
od x narišemo y v odvisnosti od nove spremenljivke z, pri čemer je z = 1/x.
Ko vlogo neodvisne spremenljivke prevzame z, dobi obratno sorazmerje
natanko obliko linearne funkcije:

y = a
1

x
+ 0

y = kz + A

pri čemer je vrednost konstante A enaka 0, vrednosti naklonskega koefici‑
enta k pa ustreza konstanta a. Ne samo, da se bo na grafu na ta način izrisa‑
la premica, iz njenega naklona bomo torej lahko celo neposredno razbrali
vrednost konstante a (slika 1.4A).

Iz eksponentne funkcije linearno dobimo z logaritmiranjem, tj. izvede‑
mo zamenjavo spremenljivke y v z = ln y. Primerjajmo logaritem ekspo‑
nentne funkcije y = y0e

−x/x0 z linearno. V ta namen eksponentno funkcijo
logaritmiramo na obeh straneh:

ln y = ln(y0e−x/x0) = ln y0 + ln e−x/x0 = − 1

x0
x+ ln y0 (1.15)

in nato primerjamo rezultat z splošnim zapisom linearne funkcije:

ln y = − 1

x0
x+ ln y0

z = k x+ A

Pri eksponentni funkciji torej namesto y v odvisnosti od xnarišemo z = ln y
v odvisnosti od x in spet se bo na grafu prikazala premica (slika 1.4B). Na‑
klon premice k bo enak−1/x0, če pa premico podaljšamo do izhodišča, pa
iz njenega presečišča z navpično osjo razberemo še vrednost ln y0. Pravza‑
prav se tudi z uporabo logaritemske skale, ki smo jo prikazali na sliki 1.3,
eksponentne odvisnosti linearizirajo. Še več, če na grafu z logaritemsko
lestvico vidimo premico, takoj vemo, da graf pravzaprav prikazuje ekspo‑
nentno odvisnost. Ker je na sliki 1.3C približno premica, lahko torej sklepa‑
mo, da se prikazana pogostost raka z leti povečuje približno eksponentno.
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Slika 1.4: Dva primera linearizacije funkcij. A) Linearizacija obratnega sorazmerja
y = a/x. Premico dobimo, če namesto y v odvisnosti od x narišemo y v odvisnosti
od 1/x. Velike vrednosti x se v tem primeru znajdejo na levi strani grafa. Naklon
premice je enak a. B) Eksponentno funkcijo lineariziramo z logaritmiranjem: na‑
mesto y v odvisnosti od x narišemo ln y v odvisnosti od x. Spet lahko iz grafa
neposredno razberemo vrednosti konstant eksponentne funkcije.

Če bi se pojavljanje raka z leti povečevalo drugače (npr. linearno, kvadra‑
tno ali kubično s časom), na logaritemskem grafu ne bi dobili premice.

Primer zapletene linearizacije je tudi znamenit Arrheniusov diagram,
ki ga uporabljajo v kemiji in je predstavljen v primeru 1.7, primer 1.8 pa
prikazuje uporabo log‑log grafa.
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Primer 1.7: Arrheniusov diagram

Arrheniusov diagram, ki ga v kemiji uporabljajo za določanje aktivacijske energije,
je lep primer uporabe linearizacije grafa. Pri preprostih kemijskih reakcijah zve‑
zo med konstanto reakcijske hitrosti k, aktivacijsko energijo Wa in temperaturo T
opisuje enačba

k = Ae−Wa/RT ,

kjer je A neka konstanta, R pa plinska konstanta. V eksperimentu izmerijo k v
odvisnosti od T . Če narišemo graf k(T ), dobimo hitro naraščajočo funkcijo iz ka‑
tere bi težko kaj ugotovili (slika A, eksponent v zgornji enačbi je sicer negativen,
a je tudi temperatura v imenovalcu in je zato celotna funkcija naraščajoča). Arr‑
heniusovo enačbo lineariziramo tako, da narišemo ln k v odvisnosti od 1/T (slika
B):

ln k = −Wa

R

1

T
+ lnA .

Aktivacijsko energijo nato določimo iz grafa, saj je naklon dobljene premice enak
−Wa/R.
Za ilustracijo si poglejmo tipični kemijski primer: določanje aktivacijske energije
za razpad etanala (povzeto po [3]). V tabeli sta najprej zapisana izmerjena k in T ,
za linearizacijo pa moramo izračunati še ln k in 1/T ter nato v graf narisati prvega
v odvisnosti od drugega.

T [K] 730 760 810 840 910

k [mol/l·s ] 0,035 0,105 0,789 2,17 20

1/T [10−3 / K] 1,37 1,32 1,23 1,19 1,10

ln(k/(mol/l · s)) ‑3,4 ‑2,3 ‑0,23 0,77 3,0
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A) Graf odvisnosti k od T – krivulja je naraščajoča, kaj več pa o njej na prvi pogled
težko rečemo. B) Linearizirana krivulja, na kateri prikazujemo ln k v odvisnosti
od 1/T (točke z višjo temperaturo so na tem grafu na levi strani). Na tem grafu
takoj vidimo, da meritve zares ustrezajo Arrheniusovi enačbi, saj ležijo na premici.
Poleg tega lahko iz naklona premice brez težav določimo aktivacijsko energijo, saj
je naklon enak −Wa/R.
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Primer 1.8: alometrija

Zanimive primere uporabe matematične analize v živem svetu najdemo v alome‑
triji. Alometrija je veda, ki preučuje spreminjanje fizioloških značilnosti organiz‑
mov v odvisnosti od njihove velikosti. Tipično vprašanje alometrije je npr.: ali je
med frekvenco bitja srca miši in slona kakšna povezava? Izkaže se, da take pove‑
zave pogosto zares obstajajo in jih lahko v splošnem opišemo z enačbo:

f = amα , (1.16)

kjer je f neka telesna značilnost,m je masa organizma v kg, a inαpa sta alometrični
konstanti, ki definirata odvisnost med f in m.
Enostaven primer alometričnih povezav so povezave med velikostjo, površino in
prostornino telesa. Ker se gostota telesa z velikostjo ne spreminja bistveno, lahko
predpostavimo, da je prostornina telesa kar približno sorazmerna masi, V ∝ m. Če
predpostavimo, da oblika telesa ni bistveno odvisna od višine, velja, da je prostor‑
nina telesa sorazmerna tretji potenci višine (V ∝ h3), površina pa drugi (S ∝ h2).
Za površino telesa torej velja alometrična zveza S ∝ m2/3.
Alometrične zveze najlepše prikažemo v log‑log grafih, saj z logaritmiranjem enač‑
be 1.16 dobimo:

ln f = α lnm+ ln a . (1.17)

Če torej narišemo ln f v odvisnosti od lnm, dobimo v grafu premico, katere naklon
je enak alometrični konstanti α.
Ena bolj znanih alometričnih zakonitosti je t. i. Kleiberjev zakon, ki povezuje me‑
tabolno aktivnost organizma z njegovo maso in velja za živali od miši do slona.
Spodnja slika prikazuje log‑log graf Kleiberjevega zakona (povzeto po [4]; za vajo
navajamo dva različna, a ekvivalentna prikaza):
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Vse točke v log‑log grafu padejo na premico, kar pomeni, da zveze med metabolno
aktivnostjo in maso telesa niso naključne, ampak so podvržene alometrični zvezi.
Dobljena premica ima naklon približno 0,75 (če po x osi premaknemo za štiri enote,
se po y osi premaknemo približno za tri enote, pri čemer ena enota na log‑grafu
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seveda pomeni faktor 10). Od miši do slona torej velja, da je metabolna aktivnost
organizma sorazmerna masi na potenco 0,75.
Zakaj je alometrični eksponentα za metabolno aktivnost ravno 0,75? Če bi predpo‑
stavili, da so vse celice v telesu živali približno enako velike in porabijo približno
enako energije, bi bila energijska poraba organizma sorazmerna številu celic in po‑
sledično njegovi masi in vrednost α bi bila približno 1. Druga možnost bi bila, da
je poraba energije sorazmerna sposobnosti telesa, da odvečno energijo oddaja s to‑
ploto. Po tem scenariju bi bila energijska poraba sorazmerna površini telesa in bi
bil α enak 2/3 = 0,67. Dejanska vrednost je med obema ocenama in znanstveniki
zadovoljive razlage Kleiberjevega zakona pravzaprav še ne poznajo.
Za vajo odčitavanja z logaritemskih lestvic poskusimo iz zgornjega grafa odčitati
metabolno aktivnost konja. Iz grafa razberemo, da je ta ravno na sredini med 100
W in 1000 W. Vendar to ni 550 W, saj je skala logaritemska. Upoštevati moramo,
da je konj pol enote nad 100 W in je njegova metabolna aktivnost torej 102,5 W ≈
300W. Na srečo pa isti faktorji veljajo tudi na drugih koncih lestvice: na sredini
med 1 in 10 je približno vrednost 3, med 10 in 100 približno 30 itd.

1.5 Še več matematike
Z napredkom znanosti je tudi matematika postajala vse bolj napredna in
zapletena. Za obvladovanje črede ovc sta zadostovala štetje in seštevanje.
Za določanje površine njiv in travnikov smo se morali naučiti množenja
in geometrije. Pri opisovanju obnašanja ionov v možganih pri slikanju z
magnetno resonanco, pa ne moremo brez matematične operacije, ki se jih
reče vektorski produkt. Nekaterih pojavov v naravi pač ne moremo za‑
dovoljivo opisati brez določenih naprednih matematičnih pojmov. V tem
razdelku bomo zato ponovili nekaj matematike, ki je zaradi zapletenosti
v kliniki sicer ne bomo srečevali prav pogosto, kljub temu pa je nepogre‑
šljivo orodje pri razumevanju nekaterih pojavov v naravi. Najprej bomo
opisali osnovne operacije z vektorji, nato pa še operaciji odvod in integral.

1.5.1 Vektorji
Nekatere količine imajo le velikost, druge pa imajo tudi smer. Prvim reče‑
mo skalarji in drugim vektorji. Lep primer skalarne količine je temperatura,
ki seveda nima smeri. Primer vektorske količine pa je hitrost, saj npr. ni
enako, če kri teče po aorti s hitrostjo 5 cm/s stran od srca ali z enako hi‑
trostjo proti srcu. Če lahko vrednost skalarnih količin opišemo le z eno
številko, pa za vektorje potrebujemo v splošnem kar tri, saj jih zapišemo
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po komponentah, ki povedo velikosti količine v smeri danih koordinatnih
osi v prostoru. Vektor hitrosti v prostoru npr. zapišemo kot v⃗ = (vx, vy, vz),
kjer so vx, vy in vz velikosti hitrosti v smereh osi x, y in z. Vektor v prostoru
si najlažje predstavljamo kot puščico, katere smer je enaka smeri količine,
dolžina pa njeni velikosti.

a	

a	a	

a	

α 
α 

a∙b=|b|	cos	α		

a+b	 a×b	

a×b	

b	

b	 b	

b	

x x	

x

y

z
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A B C

Slika 1.5: Prikaz treh najpogostejših matematičnih operacij z vektorji. A) Sešteva‑
nje vektorjev. Vektorja lahko seštejemo grafično, tako da začetek drugega vektorja
postavimo na konec prvega, lahko pa jih seštevamo po komponentah. V zgornjem
primeru je a⃗ = (5,0) in b⃗ = (3,5), zato je vsota enaka a⃗ + b⃗ = (8,5). B) Skalarni
produkt je sorazmeren dolžini projekcije enega vektorja na drugega. Izračunamo
ga lahko kot a⃗ · b⃗ = |a||b| cosα. C) Vektorski produkt vektorjev a⃗ in b⃗ je vektor, ki je
pravokoten na a⃗ in b⃗. Njegova velikost je enaka ploščini paralelograma med a⃗ in
b⃗, ki jo izračunamo kot |⃗a× b⃗| = |a||b| sinα. Smer vektorskega produkta lahko do‑
ločimo s prikazanim »pravilom desne roke«: s kazalcem desne roke pokažemo v
smer prvega vektorja v produktu, s sredincem v smer drugega vektorja v produk‑
tu in palec nam bo pokazal v smer vektorskega produkta. Če vrstni red vektorjev
zamenjamo, bo vektorski produkt kazal ravno v nasprotno smer.

Seštevanje vektorjev je enostavno, saj jih lahko seštejemo grafično z zla‑
ganjem vektorskih puščic ene za drugo, ali pa preprosto seštejemo vsako
komponento posebej (slika 1.5A). Poleg seštevanja vektorjev bomo v neka‑
terih situacijah srečali tudi dve malo bolj abstraktni operaciji »množenja«
vektorjev, to sta skalarni in vektorski produkt.

Skalarni produkt je matematična operacija, ki izračuna produkt dolži‑
ne projekcije drugega vektorja na prvega in dolžine prvega vektorja (slika
1.5B). Dolžine so skalarji, zato je tudi rezultat skalarnega produkta skalar.
Skalarni produkt je največji, če sta vektorja vzporedna in enak nič, če sta
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pravokotna. Zapišemo ga s piko med vektorjema (v angleščini se mu reče
tudi »dot product«), izračunamo pa s pomočjo kosinusa kota med njima:
a⃗ · b⃗ = |a||b| cosα.

Vektorski produkt dveh vektorjev srečamo npr. pri opisu vrtenja in pa
pri opisu pojavov v magnetnem polju. Rezultat vektorskega produkta je
vektor, ki je pravokoten na oba vektorja v produktu, njegova velikost pa
je enaka ploščini paralelograma, ki ga vektorja oklepata (slika 1.5C). Za‑
pišemo ga s križcem med vektorjema (v angleščini se mu reče tudi »cross
product«), njegovo velikost pa izračunamo s pomočjo sinusa kota med vek‑
torjema |⃗a × b⃗| = |a||b| sinα. Vektorski produkt dveh vektorjev bo torej
največji, če sta vektorja pravokotna in bo enak nič, če sta vektorja vzpo‑
redna. Za določanje smeri vektorskega produkta lahko uporabimo katero
od mnogih pravil, ki so si jih izmislili v ta namen. Primer »pravila desne
roke« je prikazan na sliki 1.5C. Da vektorski produkt ni najbolj običajna
matematična operacija, vidimo tudi iz njegove antikomutativnosti, se pra‑
vi da je njegov rezultat odvisen od vrstnega reda vektorjev v produktu:
a⃗× b⃗ = −b⃗× a⃗.

1.5.2 Stopnje prostosti
Pri opisovanju gibanja pogosto srečamo pojem prostostna stopnja. Ta nam
pove, koliko neodvisnih podatkov (koordinat) potrebujemo za opis stanja
nekega sistema. Za opis položaja točke na premici npr. potrebujemo en
podatek (x), za opis položaja točke v ravnini potrebujemo dva podatka (x
in y), v prostoru pa tri (x, y in z). Če opisujemo gibanje razsežnega pred‑
meta, poleg treh podatkov o njegovem položaju v koordinatnem sistemu v
splošnem potrebujemo še tri podatke o njegovi orientaciji v prostoru (slika
1.6A), zato ima tako gibanje šest prostostnih stopenj. O prostostnih sto‑
pnjah govorimo tudi pri opisovanju možnih premikov sklepov – gibanje
dveh sklepov na prstu roke je omejeno le na eno prostostno stopnjo, naj‑
nižji sklep pa omogoča gibanje v dveh smereh in ima zato dve prostostni
stopnji (slika 1.6B).

1.5.3 Odvod in integral
Ko smo se v srednji šoli učili o odvodu in integralu (tj. o diferencialnem
računu), sta se nam zdela predvsem primera zelo abstraktne in neuporab‑
ne matematike. A v resnici je ravno obratno. Odvod in integral sta namreč
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Slika 1.6: A) Za opis položaja predmeta v prostoru potrebujemo šest prostostnih
stopenj, saj lahko predmet premikamo v treh neodvisnih smereh ter vrtimo okoli
treh neodvisnih osti. B) Vsak od prstov na roki ima dva sklepa z eno stopnjo pro‑
stosti, enega pa z dvema. Slednjega lahko namreč premikamo v dveh neodvisnih
smereh.

nepogrešljiva pri natančnem opisovanju naravnih pojavov, zato ni naklju‑
čje, da je bil eden njunih izumiteljev ravno Isaac Newton. Dejstvo je, da sta
ti matematični operaciji malo zahtevnejši in ju zato v ordinaciji ne sreča‑
mo. Vseeno pa si bomo tu ogledali njune glavne značilnosti, saj nam bosta
omogočala boljše razumevanje nekaterih izpeljav naravnih zakonov, pa tu‑
di boljše razumevanje znanstvene literature.

Odvod funkcije podaja njeno strmino, tj. naklonski koeficient tangente
na to funkcijo v izbrani točki (slika 1.7A). Z drugimi besedami, če je odvod
funkcije f(x) velik, se vrednost funkcije s spreminjanjem x zelo spreme‑
ni, če pa je odvod funkcije majhen, se njena vrednost s spreminjanjem x
spremeni malo. Odvod funkcije f(x) ponavadi označimo s črtico kot f ′(x),
lahko pa tudi z ulomkom df/dx ali pa s piko ḟ(x), pri čemer si diferencial
dx lahko predstavljamo kot zelo kratek interval ∆x. Ker je strmina funk‑
cije f(x) v splošnem odvisna od x, je seveda tudi odvod f ′(x) funkcija ne‑
odvisne spremenljivke x. V minimumih in maksimumih funkcije bo njen
odvod enak nič, saj je tangenta na funkcijo tam vodoravna. Pri računanju
odvodov najbolj pogostih funkcij si pomagamo s pravili, ki so navedena v
tabeli 4 v dodatku na strani 377.

Določeni integral funkcije podaja ploščino med to funkcijo in vodorav‑
no osjo na izbranem intervalu (slika 1.7B). Rezultat določenega integrala je
torej številka. Določeni integral funkcije f(x) na intervalu od x1 do x2 zapi‑
šemo kot

∫ x2

x1
f(x)dx. Pri računanju določenih integralov si pomagamo z
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Slika 1.7: A) Odvod funkcije f(x) je enak njeni strmini, tj. naklonskemu koefici‑
entu tangente na funkcijo. Odvod funkcije v dani točki je torej enak spremembi
vrednosti funkcije (df ) na zelo kratkem kratkem intervalu (dx): f ′(x) = df/dx.
Če funkcija narašča, je odvod pozitiven, če pa pada, je negativen. V ekstremih
funkcije je njen odvod enak nič (točki a in b). B) Določeni integral funkcije je enak
ploščini pod to funkcijo na danem intervalu. Ta ploščina je enaka vsoti ploščin
pravokotnikov z zelo kratkimi stranicami dx, pri čemer je ploščina enega takega
pravokotnika pri izbranem x enaka f(x)dx.

operacijo, ki je obrata odvajanju:
∫ x2

x1
f(x)dx = F (x2)− F (x1), kjer je F (x)

t. i. nedoločeni integral, ki je obratna funkcija odvoda: F ′(x) = f(x) ⇔
F (x) =

∫
f(x)dx. Pri računanju integralov najbolj pogostih funkcij si torej

pomagamo z obratnimi pravili, kot pri odvajanju (tabela 4 v dodatku na
strani 377).

In zakaj sta odvod in integral pri opisovanju narave tako nepogrešlji‑
va? Izkaže se, da so linearne zveze v fizikalnih zakonih, ki smo se jih učili
v osnovni in srednji šoli, le približki dejanskih zvez, ki jih pravilno zapiše‑
mo z odvodom in integralom. Vsi npr. poznamo znano zvezo med potjo,
hitrostjo in časom: v = s/t oziroma s = vt, vendar pa je ta zveza uporabna
le, če je hitrost konstantna. V praksi je hitrost seveda le redko konstan‑
tna in se s časom spreminja, zato moramo njeno vrednost izračunati kot
v = ds/dt, prepotovano pot pa s pomočjo integrala s =

∫ t2
t1
v dt. Podob‑

no je tudi z mnogimi drugimi zvezami med količinami, ki jih bomo srečali
pri medicini, npr. z zvezo med prostornino vdihanega zraka in hitrostjo
dihanja (pretokom), ki jih v kliniki analiziramo s postopkom imenovanim
spirometrija (primer 1.9).
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Primer 1.9: zveza med prostornino in pretokom vdihanega zraka

Pri opisovanju dihalnih težav pacientov moramo dobro razumeti zvezo med pro‑
storninskim pretokom zraka v pljuča in prostornino vdihanega zraka, ki se v kli‑
niki analizira pri postopku imenovanem spirometrija. Spoznali bomo, da te zveze
ne moremo zadovoljivo opisati brez poznavanja odvoda in integrala.
Med spirometrijo pacient diha v napravo imenovano spirometer, ki določi prostor‑
nino vdihanega zraka (V , v litrih) in prostorninski pretok dihanja (ΦV , v litrih na
sekundo), na osnovi katerih nato zdravnik pulmolog sklepa o stanju pacientovih
pljuč. Spirometer lahko izmeri le eno količino, drugo pa izračuna iz izmerjene, saj
sta vdihnjena prostornina in pretok tesno povezana. Če bi npr. 2 s vdihavali s pre‑
tokom 2 l/s, bi se nam prostornina pljuč povečala za 4 l. Velja tudi obratno: če bi se
nam prostornina pljuč v 2 s povečala za 4 l, bi lahko sklepali, da je bil pretok zraka
med dihanjem 2 l/s. Sklepamo torej, da je med vdihnjenim prostornino zraka in
njegovim pretokom povezava:

ΦV =
∆V

∆t
oz. ∆V = ΦV ∆t . (1.18)

Pri svojem razmisleku smo nehote predpostavili, da je prostorninski pretok kon‑
stanten. Pa je res? Spodnja slika prikazuje dejanske spirometrične meritve:

čas [s]

čas [s]

vo
lu

m
sk

i p
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 [
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0 1
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4
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6

Vidimo, da prostorninski pretok v resnici sploh ni konstanten, ampak je funkcija
časa ΦV (t) in se med vdihom spreminja vse od 0 l/s do 4,5 l/s. Katero vrednost
pretoka moramo torej pri izračunu povečanja prostornine pljuč vstaviti v enačbo
1.18?
Z enačbama 1.18 torej ne moremo dobro opisati zveze med vdihnjeno prostornino
in pretokom, saj sta preveč poenostavljeni in predpostavljata, da je pretok zraka
konstanten. V naravi pa so količine redko konstantne, zato naš preprost linearen
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opis odpove. Iz zagate nas seveda rešita odvod in integral: enačba 1.18 velja tem
bolje, čim krajši interval ∆t dihanja opazujemo, saj se v zelo kratkem času prostor‑
ninski pretok pač ne bo veliko spremenil. Vidimo, da je v splošnem prostorninski
pretok pravzaprav odvod prostornine po času, vdihnjena prostornina pa je inte‑
gral prostorninskega pretoka. Zvezo med njima moramo torej napisati kot

ΦV =
dV
dt

oz. ∆V =

∫ t2

t1

ΦV dt , (1.19)

kjer smo z ∆V označili prostornino, ki jo vdihnemo med časom t1 in časom t2.
Naša razumevanje odvoda se seveda lepo sklada z zgornjo sliko: ko prostorni‑
na narašča, je pretok pozitiven, ko prostornina pada, je pretok negativen in ko je
prostornina maksimalna ali minimalna, je pretok enak nič.

Opozorimo naj še, da znamo integrale in odvode enostavno izračunati
le za najpreprostejše funkcije, ki so predstavljene v tabeli 4 v dodatku na
strani 377. V praksi se pogosto zgodi, da količin v naravi s preprostimi
funkcijami kot so ex, sin x, xn ipd. sploh ne moremo opisati. Tudi v takih
primerih zveze med količinami z odvodom in integralom veljajo, le raču‑
nanje z njimi je težje. V primeru s spirometrijo enačba 1.19 velja, pa čeprav
izmerjenih ΦV (t) in ∆V (t) sploh ne znamo zapisati s pomočjo enostavnih
funkcij. Na srečo računanje integralov in odvodov ne predstavlja težave
za računalnik v spirometru, ki brez težav na osnovi izmerjenega ΦV (t) iz‑
računa ∆V (t) ali obratno.
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Poglavje 2

Gibanje

Gibanje je osnova naravnih pojavov, zato ni naključje, da so se z vprašanji
gibanja intenzivno ukvarjali že stari Grki. Brez gibanja se ne bi nikoli nič
zgodilo, kemijske reakcije ne bi potekale, na svetu ne bi bilo življenja in tudi
nas ne, da bi o njem razmišljali. Čeprav nam je gibanje vsem zelo domače,
pa natančen opis gibanja ni povsem enostaven. To je med prvimi spoznal
grški filozof Zenon, ki je po dolgem razmišljanju o naravi gibanja prišel do
ugotovitve, da hitri Ahil v tekaškem tekmovanju nikoli ne more ujeti po‑
časne želve. Da se tudi mi ne bomo ujeli v kakšen paradoks, bomo v tem
poglavju spoznali matematični opis dveh glavnih vrst gibanja: premega
gibanja in kroženja. Slednje nam bo med drugim pomagalo, da bomo ra‑
zumeli princip delovanja centrifuge, ki je ena od osnovnih laboratorijskih
naprav.

2.1 Opisovanje gibanja
Telo se giblje, če se mu s časom spreminja položaj v prostoru. Kako hitro se
spreminja položaj opišemo s hitrostjo, za opisovanje sprememb gibanja pa
moramo vpeljati še pospešek, ki pove, kako hitro se spreminja hitrost. Če se
telo giblje le v eni smeri, npr. v smeri osi x, hitrost gibanja izračunamo kot
majhno spremembo položaja (dx) v kratkem času (dt):

v =
dx
dt

, (2.1)
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pospešek pa določimo iz podatka, kolikšna je v kratkem času dt (majhna)
sprememba hitrosti dv:

a =
dv
dt

. (2.2)

V jeziku matematike bi rekli, da je hitrost odvod poti po času, pospešek pa
odvod hitrosti po času. Enota za hitrost je m/s, enota za pospešek pa m/s2.
Nekaj tipičnih velikosti pospeškov iz vsakdanjega življenja je navedenih v
primeru 2.1.

V treh dimenzijah so položaj, hitrost in pospešek vektorji. Položaj opi‑
šemo s krajevnim vektorjem r⃗, katerega koordinate so enake koordinatam
položaja telesa v prostoru. Vektor hitrosti v⃗ kaže v smeri gibanja, vektor
pospeška a⃗ pa kaže v smer spreminjanja hitrosti. Če je hitrost konstantna,
pravimo, da je gibanje enakomerno, če pa je konstanten pospešek, pravimo,
da je gibanje enakomerno pospešeno. Če gibanje poteka le v eni smeri, je gi‑
banje premo. Posebej zanimivo gibanje je vrtenje oz. kroženje, saj se pri njem
telo neprestano giblje, pa se kljub temu po določenem času spet znajde na
začetku. Trije primeri gibanja so predstavljeni na sliki 2.1.

Primer 2.1: pospeški okoli nas

V vsakdanjem življenju smo si pridobili nekaj občutka za velikosti razdalj in časa
(predstavljamo si, kaj sta 1m in 1 s), o velikosti pospeškov pa moramo malo premi‑
sliti. Najbolj naraven pospešek na Zemlji je težni pospešek g ≈ 10m/s2, s katerim
padamo pri prostem padu. Še bolj od prostega pada si verjetno predstavljamo po‑
speševanje avtomobila. Če pri tipičnem avtu pritisnemo do konca na plin, bo od
0km/h do 100km/h pospešil v približno 12 s. Pospešek, ki ga pri tem čutimo, je
torej

a =
∆v

∆t
=

100km
h · 12 s

=
100000m
3600 s · 12 s

= 2,3m/s2 .

Pospešek pospeševanja avtomobila je torej precej manjši od g. Človeško telo naj
bi brez večjih težav preneslo pospeške do približno petkratnika težnega pospeška
(5g), zato pri pospeševanju avtomobila ni nevarnosti, da bi se zaradi prevelikega
pospeška onesvestili. Drugačna zgodba je pri nesreči. Če se z veliko hitrostjo zale‑
timo v oviro, se lahko ustavimo v zelo kratkem času in ob tem doživimo ogromen
pospešek (pojemek).
Dobri atleti lahko ob začetku teka dosežejo celo nekaj večji pospešek kot navadni
avtomobili. Še boljši tekač od ljudi je gepard in nedavna raziskava njegovega teka
je pokazala zanimivo podrobnost: za uspešen lov gepard ne potrebuje le velike
končne hitrosti teka, ampak predvsem velike pospeške pri pospeševanju, zavijanju
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A B C

Slika 2.1: Shematični prikaz treh gibanj. Pikčasta črta prikazuje spreminjanje po‑
ložaja s časom, moder vektor je hitrost, rdeč črtkan vektor pa je pospešek. A)
Prosti pad. Prosti pad je premo enakomerno pospešeno gibanje, saj se pri njem
telo giblje le vzdolž navpične smeri, hkrati pa je pospešek konstanten (enak je te‑
žnemu pospešku g). Ker je vektor hitrosti vedno vzporeden vektorju pospeška, se
smer hitrosti ne spreminja, povečuje pa se njena velikost. B) Enakomerno krože‑
nje. Velikost hitrosti se ne spreminja, zato pa se neprestano spreminja njena smer.
Vektor pospeška je torej vedno pravokoten na vektor hitrosti; hitrost kaže v sme‑
ri gibanja, pospešek pa proti osi kroženja. C) V splošnem vektor hitrosti vedno
kaže v smeri gibanja, vektor pospeška pa v smeri spreminjanja hitrosti. Pravoko‑
tna komponenta pospeška na hitrost skrbi za obračanje smeri hitrosti, vzporedna
komponenta pospeška na hitrost pa za spreminjanje velikosti hitrosti. V prvi točki
na sliki torej telo pospešuje in zavija v desno, v drugi pa zavira in zavija v levo.

in zaviranju (več kot 10g, glej sliko). Ta ugotovitev niti ni tako presenetljiva, če
se spomnimo taktike bega pri mnogih živalih, ki ni le doseganje velike hitrosti,
ampak predvsem hitro in nepričakovano zavijanje sem ter tja.

Gepardu so za vrat pritrdili senzorje, ki so natančno beležili njegovo gibanje. Po
analizi 367 lovskih tekov se je izkazalo, da je bila uspešnost lova bolj kot s samo
hitrostjo teka povezana z doseganjem velikih pospeškov in pojemkov med lovom
[5].
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2.2 Kroženje in vrtenje
Vrtenje oz. kroženje je posebna vrsta gibanja, ki se ga je vredno bolj natanč‑
no ogledati, saj nam bo pomagalo pri razumevanju delovanja centrifuge.
Vrtenje je podobno kroženju, le da o vrtenju ponavadi govorimo, če se te‑
lo vrti okoli osi, ki telo prebada, pri kroženju pa telo kroži okoli osi, ki ne
gre skozi telo. Vrtiljak se vrti, otrok, ki sedi na vrtiljaku, pa kroži okoli osi
vrtiljaka.

Čeprav je kroženju gibanje v ravnini in se telesu hkrati spreminjata ko‑
ordinati x in y (slika 2.2), pa lahko položaj krožečega telesa enolično opi‑
šemo tudi le z eno samo spremenljivko, s kotom zasuka ϕ. Kroženje okoli
ene osi je torej gibanje z le eno prostostno stopnjo. Vpeljemo lahko tudi
kotno hitrost ω, ki opisuje, kako hitro se spreminja kot, ter kotni pospešek α,
ki opisuje, kako hitro se spreminja kotna hitrost:

ω =
dϕ
dt

in α =
dω
dt

. (2.3)

Če kote merimo v radianih, pri katerih enote ne pišemo, je enota za kotno
hitrost s−1 (radian na sekundo), enota za kotni pospešek pa s−2 (radian na
kvadratno sekundo).

x

y

lr

ϕ

→

Slika 2.2: Pri kroženju je položaj tele‑
sa enoznačno določen z radijem krože‑
nja r in s kotom ϕ. Kot po dogovoru
merimo od osi x v obratni smeri urine‑
ga kazalca. Kotu ϕ ustreza dolžina loka
l = rϕ (kot moramo pri tem seveda me‑
riti v radianih). Med kotom ϕ in koordi‑
natama x in y veljata zvezi x = r cosϕ
in y = r sinϕ. Ker je radij konstanten, se
pri gibanju spreminja le ϕ, zato je krože‑
nje gibanje z eno prostostno stopnjo.

Zveze med kotom, kotno hitrostjo in kotnim pospeškom (ϕ, ω in α) so
enake, kot zveze med potjo, hitrostjo in pospeškom pri premem gibanju
(x, v in a). Izkaže se, da je analogija med kotnimi in premimi količinami
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splošna, in da lahko vse enačbe za premo gibanje enostavno prepišemo v
enačbe za kroženje, pri čemer uporabimo analogije

x→ ϕ , v → ω in a→ α . (2.4)

Če npr. pri enakomerno pospešenem gibanju prepotovano pot izračunamo
kot povprečna hitrost krat čas, x = v̄t, lahko pri enakomerno pospešenem
kroženju opravljen kot izračunamo iz povprečne kotne hitrosti: ϕ = ω̄t.
Drugi primer: ker pri enakomerno pospešenem premem gibanju pot nara‑
šča po enačbi x = ½at2, pri enakomerno pospešenem kroženju kot narašča
po enačbi ϕ = ½αt2. Analogijo med kroženjem in premim gibanjem bomo
kasneje še večkrat srečali.

Pri kroženju lahko definiramo še obhodni čas t0, to je čas, ki ga telo po‑
trebuje za en obrat, ter frekvenco vrtenja, ki pove koliko obratov naredi v
časovni enoti. Frekvenca je obratna vrednost obhodnega časa

ν = 1/t0 . (2.5)

Enota za frekvenco je ponavadi hertz, 1Hz = 1 s−1, pogosto pa srečamo
tudi RPM, to je rotations perminute oz. obrati na minuto. Iz dejstva, da en
obrat ustreza obratu za kot 2π, ugotovimo zvezo med frekvenco kroženja
in kotno hitrostjo:

ω = 2πν , (2.6)

pri čemer je tako izračunana kotna hitrost izražena v radianih na sekundo
oz. s−1.

Pri enakomernem kroženju se velikost hitrosti ne spreminja, nepresta‑
no pa se spreminja njena smer (slika 2.1B). Strogo vzeto je torej enakomerno
kroženje pospešeno gibanje. Pospešek, ki spreminja smer vektorja hitrosti,
kaže proti osi kroženja, zato ga imenujemo radialni pospešek ar. Daljši ra‑
čun pokaže, da je velikost radialnega pospeška sorazmerna kvadratu kotne
hitrosti in radiju kroženja (glej MaFijski primer 2.1):

ar = rω2 . (2.7)

Ta rezultat je zelo pomemben za razumevanje delovanja osnovnega labo‑
ratorijskega aparata, centrifuge (primer 2.3).
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Bolj kot je neka točka oddaljena od osi kroženja, večjo krožnico opisuje
med kroženjem. Pri dani kotni hitrosti vrtenja se torej bolj oddaljene točke
gibljejo z večjo obodno hitrostjo kot točke bliže osi. S pomočjo geometrije
(slika 2.2) lahko izpeljemo zveze med kotnimi in obodnimi količinami:

l = rϕ , v = rω in at = rα . (2.8)

Tu je l dolžina loka na krožnici, ki ustreza kotu ϕ, r je radij krožnice, v pa
obodna hitrost. Naj opozorimo, da moramo v zgornji enačbi kot ϕmeriti v
radianih. Če se zavrtimo za en cel krog, opravimo kotϕ = 2π in pot l = 2πr.
Pospešek at je tangencialni pospešek, ki je prisoten pri neenakomernem
kroženju. V takem primeru se namreč poleg smeri hitrosti spreminja tudi
njena velikost, za kar poskrbi ravno tangencialni pospešek, ki kaže v smeri
gibanja, se pravi v smeri tangente na krožnico. Pri enakomernem kroženju
je ω konstanta, α = 0, zato velja tudi at = 0.

Primer 2.2: zobni sveder
Zobni sveder se lahko vrti s frekvenco več kot 250 000RPM. Izračunajmo obodno
hitrost površine svedra, če je radij svedra 0,5mm?
Iz zvez med obodnimi in kotnimi količinami (enačba 2.8) izračunamo

v = rω = r2πν =
2π · 0,0005m · 250000

60 s
= 13m/s .

Za vajo izračunajmo še, koliko obratov naredi sveder med ustavljanjem, če se od
polne hitrosti do mirovanja ustavi v dveh sekundah? Predpostavimo, da se usta‑
vlja enakomerno pojemajoče.
Ker se sveder ustavlja enakomerno pojemajoče, je njegova povprečna kotna hitrost
ravno polovica začetne, celotni kot, ki ga naredi pri ustavljanju, pa lahko po ana‑
logiji z enačbo s = v̄t izračunamo z φ = ω̄t = 2πν̄t. Ker en obrat ustreza kotu 2π
radianov, lahko število obratov med ustavljanjem izračunamo iz

N =
φ

2π
=

ω̄t

2π
= ν̄t =

125000 · 2 s
60 s

≈ 4167 .

Če bi se sveder zares ustavljal tako dolgo, bi lahko torej med ustavljanjem izvrtal
še kar precejšnjo luknjo.
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Primer 2.3: centrifuga

Centrifuga je ena najosnovnejših la‑
boratorijskih naprav. Uporabljamo
jo za ločevanje delcev in raztopin gle‑
de na gostoto: če epruveto z razto‑
pino zavrtimo, jo izpostavimo radi‑
alnemu pospešku, zato bodo gostej‑
ši deli raztopine potonili proti dnu
epruvete, redkejši pa ostali zgoraj.
Podobno bi se zgodilo tudi zaradi te‑
že, le da je lahko radialni pospešek
veliko večji od težnega in zato loče‑
vanje v centrifugi poteka veliko hi‑
treje.
Različni postopki zahtevajo različno velike radialne pospeške. Za ločevanje rdečih
krvničk od krvne plazme je ponavadi dovolj nekaj minut vrtenja pri nekaj tisoč g
(rdeče krvničke so gostejše od plazme, zato končajo na dnu epruvete), pri delu s
proteini pa uporabljamo ultracentrifuge, ki dosežejo več kot 100 000RPM oziroma
več kot 1 000 000g!

r

ω

eritrociti

krvna plazma

Pri uporabi centrifug moramo biti pazljivi, saj imajo različne centrifuge različne
radije rotorja, zato je pri različnih centrifugah za določen pospešek potrebno na‑
staviti različne hitrosti vrtenja. Če ima centrifuga npr. radij rotorja 25 cm in jo
želimo nastaviti na radialni pospešek 2000g, ji moramo frekvenco vrtenja nastaviti
na

ar = rω2 ⇒ ω =

√
ar
r
⇒ ν =

1

2π

√
ar
r

=
1

2π

√
2000 · 10m
s2 · 0,25m

= 45Hz ,

kar ustreza frekvenci 2700RPM. Pri zgornjem računu smo uporabili izraz za radi‑
alni pospešek (enačba 2.7) in zvezo med frekvenco in kotno hitrostjo (enačba 2.6).
Če bi bil radij rotorja manjši, bi morali za enak radialni pospešek nastaviti ustrezno
večjo hitrost vrtenja.
Centrifuge uporabljajo tudi pri raziskavah vplivov velikih pospeškov na človeško
telo, le da so take centrifuge veliko večje in se zato lahko vrtijo počasi (ameriška
vesoljska agencija NASA ima npr. centrifugo s premerom več kot 15m).
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MaFijski primer 2.1: izpeljava radialnega pospeška

Za izpeljavo izraza za radialni pospešek bomo morali uporabiti vse svoje znanje
matematike! Izraz bomo izpeljali za enakomerno kroženje (α = 0), vendar velja
tudi v splošnem primeru.
Radialni pospešek bomo izpeljali iz osnovnih definicij. Če hočemo izračunati po‑
spešek gibanja, moramo vedeti, kako se pri gibanju spreminja hitrost, slednjo pa
lahko izračunamo, če poznamo spreminjanje položaja. Iz slike 2.2 razberemo, da
lahko položaj točke, ki v ravnini (x, y) kroži po krožnici z radijem r, zapišemo s
krajevnim vektorjem

r⃗ = (x, y) = (r cosϕ, r sinϕ) = r(cosϕ, sinϕ) . (2.9)

Vektor (cosϕ, sinϕ) je enotski vektor, ki kaže od osi proti točki na krožnici (za vajo
lahko s pomočjo Pitagorovega izreka preverite, da je dolžina tega vektorja zares
enaka 1). Kot ϕ se med kroženjem spreminja s časom in sicer kot ϕ = ωt.
Vektor hitrosti dobimo, če krajevni vektor odvajamo po času:

v⃗ =
dr⃗
dt

= rω(− sinϕ, cosϕ) . (2.10)

Pri odvajanju smo upoštevali naslednje:

• vsako komponento vektorja odvajamo neodvisno

• radij kroga r je konstanta

• kot ϕ je funkcija časa, zato moramo cosϕ in sinϕ odvajati posredno, upo‑
števamo pa tudi ω = dϕ/dt:

d
dt

cosϕ = − sinϕ · dϕ
dt

= − sinϕ · ω . (2.11)

Iz dobljenega izraza za hitrost vidimo, da je velikost vektorja hitrosti enaka ωr,
njegova smer pa je pravokotna na krajevni vektor r⃗. Tudi vektor (− sinϕ, cosϕ)
ima namreč dolžino 1, njegova smer pa je pravokotna smeri vektorja (cosϕ, sinϕ).
O pravokotnosti r⃗ in v⃗ se lahko prepričate tako, da vektorja med seboj skalarno
pomnožite in rezultat bo enak 0.
Izračunati moramo še pospešek. Dobimo ga z odvajanjem vektorja hitrosti, pri
čemer upoštevamo ista pravila kot zgoraj:

a⃗ =
dv⃗
dt

= rω2(− cosϕ,− sinϕ) . (2.12)

Z enakim razmislekom kot prej ugotovimo, da je velikost vektorja pospeška enaka
rω2, njegova smer pa je nasprotna smeri krajevnega vektorja r⃗ in torej kaže proti
osi vrtenja. Pospešek je torej res »radialni« pospešek.
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Poglavje 3

Vzroki gibanja in ravnovesje: sile
in navori

3.1 Sile
Vprašanje o vzrokih gibanja, s katerim so se stari Grki neuspešno ubada‑
li, je uspelo dokončno razrešiti šele Isaacu Newtonu ob koncu 17. stoletja.
Newton je ugotovil, da so vzrok za spremembe gibanja sile, njegove ugo‑
tovitve pa še danes povzamemo v treh Newtonovih zakonih:

1. Če je rezultanta sil na telo enaka nič, telo vztraja v svojem gibanju oz.
se giblje premo enakomerno ali pa miruje.

2. Pospešek telesa a je sorazmeren rezultanti sil na telo F , sorazmerno‑
stni koeficient pa je masa telesa m:

F⃗ = ma⃗ . (3.1)

Večja kot je masa telesa, težje je z dano silo telesu spremeniti gibanje.

3. Če telo 1 deluje na telo 2 s silo F⃗12, potem telo 2 deluje na telo 1 z
nasprotno enako silo, F⃗12 = −F⃗21.

Enota za silo je newton, pri čemer iz 2. Newtonovega zakona (enačba 3.1)
razberemo, da velja N = kg m/s2. Ne pozabimo, da rezultanto sil izraču‑
namo kot vektorsko vsoto vseh sil na telo. Čeprav so sile definirane preko
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Newtonovih zakonov in je njihova glavna lastnost spreminjanje gibanja te‑
les, pa s silami v splošnem opisujemo vsakršno mehansko delovanje telesa
na telo in lahko npr. povzročajo tudi deformacije telesa (glej primera 3.3
in 3.4).

Sedaj je čas, da si odgovorimo na veliki navidezni paradoks fizikalnega
opisa vrtenja: zakaj eritrocite med vrtenjem v centrifugi vleče proti zuna‑
njosti, če pa radialni pospešek pri vrtenju vendar kaže proti notranjosti (sli‑
ka 2.1)? Natančen fizikalen odgovor na to vprašanje ni povsem enostaven
in zahteva definiranje pojmov, kot so »neinercialni sistem«, »centrifugalna
sila« in »centripetalna sila«. Mi teh definicij na srečo ne bomo potrebovali
in si bomo odgovor raje poiskali v situaciji, ki jo vsi dobro poznamo: ko
zaviramo v avtomobilu, nas vleče naprej, čeprav se avto ustavlja in vektor
pospeška torej kaže nazaj. Ko nas med zaviranjem »vleče« naprej, pravza‑
prav čutimo svojo vztrajnost. Če varnostni pasovi na nas ne bi delovali s
silo nazaj, bi se zaleteli v vetrobransko steklo. Pri eritrocitih v centrifugi
je podobno. Dokler so v raztopini, vztrajajo v svojem gibanju in potujejo
proti ven. Ko se enkrat posedejo na dno epruvete, na njih deluje sila dna
epruvete in jim daje radialni pospešek, ki kaže proti osi vrtenja.

Primer 3.1: teža in masa
V vsakdanjem pogovoru pojma teža in masa pogosto uporabljamo enakovredno,
vendar pa je s pojmom teža pri fiziki v resnici mišljena sila teže, do katere pride
zaradi gravitacijskega privlaka. Strogo vzeto se torej masa meri v kilogramih, teža
pa v newtonih. Ker je težni pospešek na površini Zemlje enak g = 9,81m/s2, je
teža človeka z maso 100 kg po 2. Newtonovem zakonu (enačba 3.1) enaka 981 N.
Če bi ta človek potoval na Luno, bi bila njegova masa še vedno 100 kg, teža pa le
še 162 N, saj je težni pospešek na površini Lune približno šest krat manjši, kot na
Zemlji. Omenimo še, da pri ocenjevanju sile teže na Zemlji zaradi lažjega računanja
težni pospešek včasih zaokrožimo na 10m/s2 in tudi težo 100 kg težkega človeka
zaokrožimo na 1000 N.
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Primer 3.2: seštevanje sil mišic

V zelo poenostavljenem anatomskem modelu noge je ahilova te‑
tiva napeta z dvoglavo mečno mišico (gastrocnemius). Kolikšna
je celotna sila te mišice na ahilovo tetivo, če je vsak od krakov mi‑
šice napet s silo FM = 300N, kot med navpičnico in silama pa je
α = 17 °?
Sili mišice kažeta vsaka v svojo smer, zato ju moramo sešteti vek‑
torsko. V našem primeru sta sili simetrični, zato se bosta vodo‑
ravni komponenti sil odšteli (ena kaže v levo, druga pa v desno),
navpični pa sešteli. Iz slike razberemo, da je navpična komponen‑
ta vsake od sil FM cosα in je zato skupna sila na tetivo

Ftetiva = 2FM cosα = 2 · 300N cos 17 ° = 574N . (3.2)

α α

Primer 3.3: sila trenja

Če se telesi v stiku medsebojno gibljeta, se med njima pojavi sila trenja, ki naspro‑
tuje gibanju. Do tega pride, ker na molekularni ravni površina teles ni popolnoma
gladka in se med gibanjem molekule enega telesa zatikajo v molekule drugega te‑
lesa. Natančen opis trenja je izjemno zapleten, v prvem približku pa se pogosto
privzame, da sila trenja ni odvisna od hitrosti gibanja ter da je sorazmerna sili, ki
telesi pritiska skupaj:

Ft = µF⊥ , (3.3)

kjer je F⊥ sila pravokotna komponenta sile med telesi (sila, ki telesi pritiska sku‑
paj), µ pa je koeficient trenja, ki je odvisen od snovi, iz katerih sta telesi, ter gladko‑
sti njunih površin. Tipične velikosti koeficienta trenja za les na les ali jeklo na jeklo
so približno 0,5, za led na led 0,05, na hrustancu kolenskega sklepa pa je koeficient
trenja celo le reda velikosti 0,001. V primerjavi z lesom ali jeklom ima hrustanec
mnogo bolj zapleteno strukturo in je sestavljen iz posebnih proteinov (kolagen, lu‑
bricin ...), lipidov in hialuronske kisline, ki omogočajo dobro hidracijo in s tem eno
najboljših lubrikacij, kar jih najdemo naravi. Čeprav so ortopedi že zelo uspešni
pri izdelovanju umetnih kostnih protez, pa je še zelo daleč do umetnega hrustanca,
ki bi bil po lastnostih primerljiv z naravnim. Zato si je vredno zapomniti posledi‑
co zgornje enačbe: z naraščanjem telesne teže naraščajo sile trenja v kolenskem
sklepu in s tem tudi njegova obraba.
V splošnem je sila trenja lahko odvisna tudi od hitrosti gibanja (če telesi mirujeta
pravimo tej sili sila lepenja, ki po velikosti ni enaka sili trenja), pa tudi odvisnost od
gladkosti površine ni vedno intuitivna. Koeficient trenja med dvema kovinama se
npr. s poliranjem površine kovine na začetku res zmanjšuje, a ko kovini spoliramo
tako dobro, da na njunih površinah ni več oksidov ali kakšnih drugih atomov, se
kovini ob dotiku stakneta in postaneta enotna snov zaradi česar ena mimo druge
sploh ne moreta več drseti!
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Primer 3.4: Hookov zakon
Zaradi delovanja sil se telesa lahko tudi de‑
formirajo. Pri prožnih (elastičnih) telesih je ve‑
likost deformacije sorazmerna sili, kar ime‑
nujemo Hookov zakon. Šolski primer prožne
deformacije je deformacija vzmeti, pri kateri
se Hookov zakon zapiše kot

F = kx , (3.4)

kjer je k konstanta vzmeti, x razteg vzmeti od
njenega ravnovesnega stanja, F pa sila, s ka‑
tero delujemo na vzmet. Bolj kot je vzmet tr‑
da, večji ima k in večja sila je potrebna za do‑
ločeno deformacijo x. Kasneje bomo videli,
da Hookov zakon velja tudi za bolj zaplete‑
ne deformacije: npr. za upogib ali za vzvoj
(torzijo) kosti.

x

F

2F

2x

3.2 Navori
Sile torej telesa premikajo, masa pa se premikanju upira. Kako pa je s tem
pri kroženju in vrtenju? Iz vsakdanje izkušnje z odpiranjem kljuke na vra‑
tih vemo, da kljuke ne moremo zavrteti le z delovanjem sile, ampak mora
biti ta sila tudi pravilno usmerjena (slika 3.1A). Podrobnejši razmislek nas
pripelje do zaključka, da je pri vrtenju pomemben navor, ki je kombinacija
sile, oddaljenosti prijemališča sile od osi vrtenja in njene smeri (slika 3.1B).
Z enačbo navor opišemo kot

M = Fr sinφ = Fr′ = F⊥r , (3.5)

kjer smo z M označili navor, F je velikost sile, r razdalja med osjo vrtenja
in prijemališčem sile, φ pa je kot med silo in vektorjem razdalje do prije‑
mališča sile. V enačbi 3.5 smo navor zapisali tudi s pomočjo pravokotne
razdalje med osjo in nosilko sile (r′ = r sinφ) ali pa s pravokotno kompo‑
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nento sile (F⊥ = F sinφ)1. Zgornja enačba lepo zaobjame našo intuitivno
predstavo o navoru: kljuke ne bomo mogli zavrteti, če je katerakoli od treh
količin F , r ali φ enaka nič. Če je φ enak 90 °, je sinφ = 1 in se enačba za
navor poenostavi v M = Fr. Enota za navor je Nm. Podobno kot sile so v
splošnem tudi navori vektorji (MaFijski primer 3.1), predznak navora pa je
odvisen od smeri, v katero navor vrti – navora z nasprotnim predznakom
telo vrtita v nasprotnih smereh.

F1 F2

F3

A B

r

r’

φ

F

F

F

→

→ →

→

→

Slika 3.1: A) Vse tri sile na sliki so enako velike, pa vendar bo lahko le ena od
njih zavrtela kljuko na vratih. Katera? B) Za vrtenje telesa je potreben navor, ki je
odvisen od velikosti sile F , oddaljenosti njenega prijemališča od osi r ter od kota
φ, pod katerim sila deluje glede na veznico med osjo vrtenja in prijemališčem sile
(enačba 3.5).

V prejšnjem razdelku smo zapisali analogijo med premim gibanjem in
vrtenjem (enačba 2.4). Analogija velja tudi za 2. Newtonov zakon, ki se za
vrtenje glasi:

M = Jα . (3.6)

Kotni pospešek telesa α je torej sorazmeren rezultanti navorov na telo M .
Masi analogna lastnost telesa pri vrtenju je vztrajnostni moment telesa J , za
katerega se izkaže, da je odvisen od porazdelitve mase telesa glede na os

1Razdaljo med osjo in prijemališčem sile imenujemo tudi ročica, vendar moramo biti
s tem izrazom pazljivi, saj z njim nekateri imenujejo razdaljo r′, drugi pa razdaljo r. V
delu slovenske literature je navor torej »sila krat ročica«, v drugem pa »sila krat ročica
krat sinus fi.«
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vrtenja. Čim bliže osi je masa, manjši je vztrajnostni moment in tem lažje
lahko telo zavrtimo. Vztrajnostni moment v nasprotju z maso ni »notranja«
lastnost telesa, ampak je odvisen od položaja osi vrtenja. Natančnejša ana‑
liza pokaže, da je vztrajnostni moment odvisen od kvadrata oddaljenosti
od osi vrtenja, in da ga lahko izračunamo po enačbi

J = mr2 oziroma J =
∑

mir
2
i , (3.7)

pri čemer levi zapis velja le, če je vsa masa telesa zbrana na enaki razdalji
od osi. V splošnem to ne velja in moramo uporabiti desni zapis ter pri
določanju vztrajnostnega momenta telesa sešteti prispevke vseh masnih
delov, ki so na različnih razdaljah. Podobno kot masa je tudi vztrajnostni
moment aditivna lastnost (primer 3.5).

Primer 3.5: polnjenje centrifuge

Ko centrifugo napolnimo z epruvetami, ji povečamo vztrajnostni moment, zato
je polno centrifugo težje zavrteti kot prazno. Izračunajmo, za koliko se spremeni
vztrajnostni moment centrifuge, ki jo napolnimo z 12 epruvetami z maso m =
200g? Epruvete so na radiju r = 25 cm, vztrajnostni moment prazne centrifuge pa
je Jc = 0,4kgm2.
Vztrajnostni moment je aditivna količina, zato lahko vztrajnostni moment epruvet
izračunamo kot

Je = 12mr2 = 12 · 0,2kg · 0,252 m2 = 0,15kgm2 .

Vztrajnostni moment polne centrifuge je torej J = Jc + Je = 0,55kgm2. Če ima
motor centrifuge konstanten navor, bo torej polna centrifuga na končno hitrost
pospeševala 0,55/0,4 = 1,375 krat več časa kot prazna.

MaFijski primer 3.1: kotna hitrost in navor sta v splošnem vektorja

Pri kroženju smo do sedaj govorili le o kroženju okoli ene osi. V praksi pa sile v
telesu delujejo v vseh mogočih smereh, zato tudi vse ne vrtijo okoli iste osi. V takih
primerih je potrebno tudi količine pri kroženju obravnavati kot vektorje. Spodnja
leva slika prikazuje, kako je definiran vektor kotne hitrosti: je pravokoten na rav‑
nino kroženja, njegova velikost pa je sorazmerna velikosti kotne hitrosti. Podobno
je pri navoru: navor je vektor, katerega smer kaže v smeri vektorja kotne hitrosti,
ki bi jo ta navor povzročal (spodnja desna slika). V vektorskem zapisu lahko tako
navor (enačba 3.5) izrazimo kar z vektorskim produktom:

M⃗ = r⃗ × F⃗ . (3.8)
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r	 F	

M	ω	

ω	

xx

y
y

z
z

Vektor pozitivne kotne hitrosti pri kroženju v ravnini x− y kaže v smeri osi z. Če
vektorja r⃗ in F⃗ ležita v ravnini x− y, bo vektor navora M⃗ v smeri osi z.

3.3 Gibalna in vrtilna količina
Newton svojih zakonov pravzaprav ni zapisal s pomočjo pospeškov (enač‑
ba 3.1), ampak je uporabil ekvivalenten pristop z uporabo pojmov gibalna
oz. vrtilna količina. Taka formulacija Newtonovih zakonov ima svoje pred‑
nosti, zato si jo je vredno ogledati.

Izračunajmo spremembo hitrosti telesa, če nanj delujemo s silo (odvo‑
dom in integralom se bomo izognili s predpostavko, da je sila konstantna).
Spremembo hitrosti lahko izrazimo s pomočjo pospeška, ki ga lahko izra‑
čunamo iz 2. Newtonovega zakona (enačba 3.1). Če sila na telo deluje čas
∆t, bo sprememba hitrosti enaka:

∆v⃗ = a⃗∆t =
F⃗

m
∆t . (3.9)

Če v zgornji enačbi maso prestavimo k hitrosti in vpeljemo gibalno količino
telesa

G⃗ = mv⃗ , (3.10)

dobimo alternativni zapis 2. Newtonovega zakona:

∆G⃗ = F⃗∆t . (3.11)

Izraz F⃗∆t imenujemo tudi sunek sile. Zgornjo enačbo lahko z besedami
povzamemo v t. i. zakon o ohranitvi gibalne količine:
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Sprememba gibalne količine telesa je enaka sunku sile na telo. Če
je rezultanta zunanjih sil na telo enaka nič, se njegova gibalna ko‑
ličina ohranja.

Analogno gibalni količini lahko vpeljemo tudi vrtilno količino:

Γ = Jω (3.12)

in 2. Newtonov zakon za vrtenje povzamemo v zakonu o ohranitvi vrtilne
količine:

Sprememba vrtilne količine telesa je enaka sunku navora na telo.
Če je rezultanta zunanjih navorov na telo enaka nič, se mu vrtilna
količina ohranja.

Vztrajnostni moment v nasprotju z maso ni »notranja« lastnost telesa,
zato se lahko med vrtenjem spreminja. To dejstvo s pridom uporabljajo
drsalci med vrtenjem v pirueti: zaradi majhnega trenja na ledu med vrte‑
njem na telo deluje le zanemarljivo majhen zunanji navor, zato se drsalcu
med vrtenjem ohranja vrtilna količina. Če drsalec med vrtenjem skrči ro‑
ke, si zmanjša vztrajnostni moment, zaradi česar se mu zaradi zakona o
ohranitvi vrtilne količine poveča hitrost vrtenja.

3.4 Ravnovesje ter obremenitve mišic in skeleta
V ravnovesju telo miruje, zato je v ravnovesju pospešek telesa enak nič. Iz
2. Newtonovega zakona torej sledi, da sta v ravnovesju vsoti vseh sil in
vseh navorov na telo enaki nič:

∑
F⃗i = 0 (3.13)

in

∑
M⃗i = 0 . (3.14)
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Enačbe za ravnovesje intuitivno pozna vsak, ki se je že kdaj usedel na
prevesno gugalnico – za ravnovesje na prevesni gugalnici mora težja oseba
sedeti bližje osi kot lažja, saj bo le v takem primeru navor sile teže težje
osebe nasprotno enak navoru sile teže lažje osebe.

Ravnovesje gugalnice je podrobneje predstavljeno na sliki 3.2, ki pri‑
kazuje vse sile, ki delujejo na gugalnico. Najprej sta tu sili, s katerima na
gugalnico s silo svoje teže pritiskata navpično navzdol obe osebi (FL inFD).
Na mirujočo gugalnico mora delovati tudi neka sila navzgor, saj bo lahko
le tako vsota vseh sil na gugalnico enaka nič. V našem primeru je to sila
v osi (FO), ki jo pozna vsak, ki je tja že kdaj po pomoti zatlačil prste in ga
je gugalnica zato uščipnila. Ker so vse tri sile vzporedne, lahko vektorski
zapis v enačbi za ravnovesje (enačba 3.13) izpustimo in jo napišemo tako,
da so na eni strani enačaja sile, ki kažejo v eno smer, na drugi strani enačaja
pa sile v nasprotno smer:∑

F⃗i = 0⇒
∑

Fi↑ =
∑

Fi↓ ⇒ FO = FL + FD . (3.15)

Velikost sile v osi je torej natanko vsota bremen na obeh koncih gugalnice.
Zapišimo še enačbo za ravnovesje navorov na gugalnico (enačba 3.14):∑

M⃗i = 0⇒
∑

Mi⟲ =
∑

Mi⟳ ⇒ rLFL = rDFD . (3.16)

Navori, ki gugalnico vrtijo v desno, morajo biti torej po velikosti enaki na‑
vorom, ki gugalnico vrtijo v levo. Dolžina ročice sile v osi je nič, zato je
tudi navor sile v osi enak nič (rOFO = 0) in ta sila v enačbi za navore sploh
ne nastopa. Sili teže oseb sta sorazmerni njunima masama (FL = mLg in
FD = mDg ), zato lahko iz zgornje enačbe potrdimo našo gugalniško intu‑
icijo: v ravnovesju bo razmerje oddaljenosti oseb do osi nasprotno enako
njunima masam: rL/rD = mD/mL.

Izkaže se, da za opisovanje ravnovesja velja uporabno pravilo: navore
lahko računamo glede na katerokoli os (sistem tako ali tako miruje in se ne
vrti okoli nobene osi). Bralec lahko sam preveri, da bi bili rezultati za sile v
ravnovesju gugalnice enaki, če bi navore računali glede na namišljeno os,
ki bi jo postavili v prijemališče leve ali desne sile. Računanje ravnovesja bo
ponavadi najlažje, če os postavimo v prijemališče sile, katere vrednost nas
ne zanima ali je ne poznamo. Navor te sile v enačbah tako ne bo nastopal
in enačbe bodo lažje za reševanje.

Povezavo med silami in navori je v tretjem stoletju pred našim štetjem
poznal že Arhimed, ki se je veliko ukvarjal z vzvodi in je dejal »Dajte mi
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FL

FO

FD

rL rD

Slika 3.2: Ravnovesje gugalnice. Razmislek o silah in navorih začnemo tako, da si
najprej predstavljamo vse sile, ki delujejo na gugalnico. Obe osebi na gugalnico
očitno pritiskata navzdol s svojo silo teže (FL in FD), iz pogoja za ravnovesje pa
lahko nato ugotovimo, da je sila v osi gugalnice (FO) nasprotno enaka vsoti sile
teže obeh oseb,FO = FL+FD. Po drugi strani mora biti zaradi ravnovesja navorov
produkt razdalje od osi in teže enak pri obeh osebah, rLFL = rDFD, kar nam
da znano zahtevo za ravnovesje gugalnice: v ravnovesju mora težja oseba sedeti
bližje osi gugalnice kot lažja.

primerno oporno točko ter dovolj dolg vzvod in premaknil bom Zemljo!«
Nam bo razumevanje sil in navorov zelo pomagalo pri računanju obreme‑
nitev mišic in kosti v telesu. Skelet je namreč zelo zapleten sistem vzvodov
(kosti), ki so med seboj povezani s sklepi, kitami in mišicami – v človeškem
telesu je več kot 200 kosti in več kot 600 skeletnih mišic.

Četudi je največja zunanja sila na skelet sila teže celotnega telesa, se iz‑
kaže, da so pri vzdrževanju ravnovesja nekateri deli telesa obremenjeni z
bistveno večjimi silami. Enostaven primer računanja obremenitev v telesu
je predstavljen v Primeru 3.6 in prikazuje obremenitve med ravnovesjem
v roki. Realni klinični primeri lahko mnogo bolj zapleteni, saj morajo upo‑
števati vse mišice in vse kosti, ponavadi pa tudi vektorsko naravo sil in
navorov, a vendar je tudi pri njih osnovi princip računanja enak kot pri
gugalnici in izhaja iz pogoja za ravnovesje sil in navorov (enačba 3.13 in
3.14).
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Primer 3.6: ravnovesje v roki

Poglejmo si zelo poenostavljen primer analize obremenitve roke, v kateri držimo
breme. Predpostavimo, da roko drži le ena mišica ter da lahko težo roke zanema‑
rimo. Razdalja med komolcem in mišico je rM = 4 cm, razdalja med komolcem
in bremenom je rB = 40 cm, masa bremena pa je 5 kg. S kolikšno silo je napeta
mišica?

FM

FM

FM

FO

F =	F +	FM	 O	 B

FO
FO

FB FB

FB

A B

j

Če je roka skrčena (slika A), bosta sila bremena na roko in sila mišice na roko nav‑
pični. Če pri računanju navorov os postavimo v komolec, lahko takoj zapišemo

FMrM = FBrB .

iz česar sledi, da je razmerje velikosti sil v ravnovesju nasprotno enako razmerju
oddaljenosti njunih prijemališč od komolca. Sila mišice bo torej 10 krat večja od
teže bremena!
Poleg sile bremena in sile mišice na roko deluje še tretja sila! To je sila v komolcu
(na sliki je označena s FO). Njena smer in velikost sta manj intuitivni, a iz pogojev
za ravnovesje lahko hitro ugotovimo, da bo morala biti v našem primeru ta sila
tudi navpična (če ne bi bila, vodoravna rezultanta sil ne bi mogla biti enaka nič) in
da bo po velikosti enaka razliki sile mišice in sile bremena. Sila v komolcu je torej
v tem primeru 9‑krat večja od teže bremena.
Situacija postane bolj zapletena, če roko malo iztegnemo in kot med mišico in roko
ni enak φ = 90 °. Slika B prikazuje primer, ko je kot med mišico in roko enak φ =
140 °. Sila bremena bo nespremenjena, zato pa se bo spremenil kot, pod katerim
na roko deluje sila mišice. Le‑ta torej na roko ne bo delovala le v navpični, ampak
tudi v vodoravni smeri. Ker k navoru prispeva le navpična komponenta sile mišice
(roka – ročica – je vodoravna), moramo ravnovesje navorov zapisati kot

FMrM sinφ = FBrB .

Ker je sin 140 ° = 0,64 bo torej sila mišice pri iztegnjeni roki še za faktor 1/0,64 večja
kot prej, oziroma bo 15,6 krat večja od sile teže bremena! Iz ravnovesja vseh treh sil
sledi, da bo vodoravno komponento dobila tudi sila v komolcu, za izračun njene
velikosti pa bi bilo potrebno uporabiti znanje iz seštevanja vektorjev.
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3.5 Težišče
Z ravnovesjem je tesno povezan pojem težišča telesa, ki je definirano kot
točka, v kateri bi morali podpreti telo, da se zaradi vpliva teže ne bi pre‑
kucnilo. Pri preprostih homogenih telesih si znamo položaj težišča dobro
predstavljati: težišče homogene ravne palice je npr. v njenem središču. Pri
zapletenejših telesih pa je pri določanju težišča potrebno malo razmisleka.
V primeru gugalnice težišče ni na sredi med osebama, ampak je pomaknje‑
no bliže težji osebi – težišče gugalnice v ravnovesju je namreč ravno tam,
kjer je podprta, tj. v osi.

Položaj težišča zapletenega telesa, ki je sestavljeno iz delov z masami
mi, lahko izračunamo s pomočjo podobnega razmisleka kot pri gugalnici.
Sila podpore v težišču na telo deluje navpično navzgor in je po velikosti
enaka sili teže celotnega telesa (masa celotnega telesa je

∑
mi). Po drugi

strani iz enačbe za ravnovesje navorov sledi, da mora biti navor te sile na‑
sprotno enak navorom sile teže vseh sestavnih delov, ne glede na to, kam
postavimo izhodišče koordinatnega sistema:

r⃗t
∑

mig =
∑

mir⃗ig , (3.17)

pri čemer smo z r⃗t označili položaj težišča, z r⃗i pa položaje posameznih
delov telesa. Ko na obes straneh pokrajšamo težni pospešek in vsoto mas
prestavimo na desno, lahko izrazimo enačbo za izračun položaja težišča za
poljubno zapleteno telo:

r⃗t =

∑
mir⃗i∑
mi

. (3.18)

Težišče je lahko tudi v točki izven telesa, kar dobro poznajo skakalci v
višino, ki se med skokom upognejo in s tem svoje težišče postavijo čim niže
(slika ??). Poleg tega je težišče uporabno pri opisovanju gibanja zapletenih
teles, ki ga lahko opišemo kot gibanje težišča in gibanje delov telesa gle‑
de na težišče. Pri skoku v višino se bo tako težišče skakalca, ne glede na
njegove gibe v zraku, premikalo po paraboli (slika 3.3A).

Na težišče moramo biti še posebej pozorni pri polnjenju centrifuge, saj
bo neuravnotežena centrifuga med hitrim vrtenjem začela opletati in se
lahko pokvari ali pa celo povsem razleti in povzroči nesrečo (slika 3.3B).
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Slika 3.3: A) Skakalec se pri skoku v višino upogne nazaj in tako zniža svoje teži‑
šče. Težišče je lahko celo izven telesa in se niti ne dvigne preko prečke. Ne glede
na skakalčeve gibe med skokom se težišče giblje po paraboli, enako kot kamen pri
poševnem metu. B) Prvi trije primeri polnjenja centrifuge z epruvetami so pravil‑
ni, saj bo težišče centrifuge v osi. Če težišče centrifuge ni v osi, začne centrifuga
opletati in se lahko pri velikih hitrostih vrtenja pokvari – spomnimo se na skaka‑
nje in razbijanja pralnega stroja, ki med centifugiranjem perila le‑tega ne zna lepo
razporediti po obodu bobna!
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Poglavje 4

Energija

Energija je eden najpomembnejših konceptov sodobne znanosti. Čeprav
ima veliko obrazov in jo je težko na enostaven način definirati, je eden red‑
kih pojmov, ki so našli osrednje mesto tako v fiziki, kot tudi v biologiji
in kemiji. Energija je količina, ki se neprestano spreminja iz ene oblike v
drugo, hkrati pa se njena skupna količina pri vseh znanih naravnih pojavih
ohranja. Zakon o ohranitvi energije je torej eden najbolj temeljnih naravnih
zakonov. V tem poglavju bomo naredili prve korake v svet energije in nje‑
ne povezave s silami, v celoti pa bomo zakon o ohranitvi energije spoznali
šele pri termodinamiki.

4.1 Delo, energija in moč
Iz vsakdanjega življenja vemo, da se pri opravljanju »dela« slej ko prej utru‑
dimo in nam »zmanjka energije«. Ta preprost pogled na delo in energijo
ni daleč od natančnega fizikalnega, ki pravi, da se s premagovanjem sile
opravi mehansko delo ter da pri tem energija prehaja iz enega sistema v dru‑
gega oziroma se ena vrsta energije spreminja v drugo. Če sila F premaga
razdaljo s, pri tem opravi delo A, ki ga v primeru konstantne sile izraču‑
namo iz zveze

A = F⃗ · s⃗ . (4.1)

Vektorski zapis je pomemben, saj je opravljeno delo odvisno od smeri gi‑
banja glede na smer sile. To odvisnost poznamo iz izkušenj pri prema‑
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govanju sile teže: če se vzpenjamo (se gibljemo proti sili teže), porabimo
največ energije, če se gibljemo vodoravno (pravokotno na silo teže), nam
sila teže ne dela težav (delo sile teže je enako 0), po klancu navzdol (v sme‑
ri sile teže) pa nam sila teže celo pomaga pri gibanju. Pogosto se zgodi,
da sila med delovanjem ni konstantna in v takem primeru moramo delo
izračunati s pomočjo integrala A =

∫
F⃗ · ds⃗.

Delo je tesno povezano s spreminjanjem energije. Za začetek naštejmo
tri osnovne vrste energije:

• Kinetična energija je energija, ki jo imajo telesa zaradi svojega gibanja.
Telo z maso m in hitrostjo v ima kinetično energijo

Wk =
1

2
mv2 . (4.2)

Sprememba kinetične energije je enaka delu sile, ki povzroči spre‑
membo hitrosti. V primeru konstantne sile lahko to zvezo izpeljemo,
če upoštevamo, da je s = v̄t, sila pa je F = ma = m∆v/t.

• Gravitacijska potencialna energija je energija, ki jo imajo telesa zaradi
svojega položaja v gravitacijskem polju Zemlje. Pri majhnih spre‑
membah višine je težni pospešek (g) konstanten in je gravitacijska
potencialna energija telesa odvisna le od njegove mase (m) in višine,
na kateri je telo (h):

Wp = mgh . (4.3)

Sprememba gravitacijske energije telesa je po velikosti enaka delu
sile teže pri spremembi višine telesa.

• Energija je lahko spravljena tudi v prožni deformaciji telesa. Najbolj
preprost primer take vrste energije je prožnostna energija vzmeti

Wpr =
1

2
kx2 , (4.4)

kjer je k konstanta vzmeti, x pa odmik od ravnovesne dolžine vzme‑
ti. Za prožnostno energijo je vseeno ali vzmet stiskamo ali razteguje‑
mo, saj je odvisna od kvadrata odmika od njene ravnovesne dolžine.
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Sprememba prožnostne energije je enaka delu sile vzmeti pri njenem
krčenju oz. raztegovanju (ker sila vzmeti med stiskanjem ni konstan‑
tna temveč je odvisna od x, moramo za izračun tega dela uporabiti
integral!).

Zgoraj naštete energije spadajo med t. i. mehanske energije, celotna me‑
hanska energija sistema pa je kar njihova vsota: Wm = Wk +Wp +Wpr. Če
med gibanjem ni notranjega trenja, se mehanska energija sistema spremeni
natanko za toliko, kolikor dela dovedemo v sistem z zunanjimi mehanski‑
mi silami:

∆Wm = A , (4.5)

pri čemer je delo sile teže sistema že všteto v potencialno energijo in ga na
desni strani enačbe ni potrebno več upoštevati. Če na sistem ne delujejo
zunanje sile, bo desna stran enačbe enaka 0, zato se bo celotna energija
sistema ohranjala:

Wm = Wk +Wp +Wpr = konst. (4.6)

V splošnem se med gibanjem težko izognemo drugim silam, saj je npr.
trenje praktično vedno prisotno. Prisotno ni le na stiku med trdimi telesi,
temveč se notranje trenje v snovi pojavi vsakič, ko se molekule snovi gi‑
bljejo ena glede na drugo, npr. med gibanjem tekočin ali med deformacijo
trdnih snovi. Ohranitev mehanske energije (enačba 4.6) je torej le pribli‑
žek, ki velja tem bolje, čim bolj lahko zanemarimo trenje. Sile, pri katerih
se mehanska energija sistema ohranja, imenujemo tudi konservativne sile
(pogosto so to sile, ki so odvisne le od položaja telesa, ne pa od njegove‑
ga gibanja). Kasneje bomo spoznali, da obstajajo še druge, ne‑mehanske,
oblike dela in energije, npr. električno delo in električna energija.

Učinek dela in spreminjanje energije iz ene oblike v drugo si lahko na‑
zorno predstavljamo pri navpičnem metu žoge (slika 4.1). Žogo vržemo
tako, da nanjo s svojimi rokami delujemo s silo in ji torej s svojim delom
dovedemo kinetično energijo. Med letom navzgor (točka a) se kinetična
energija žogi zmanjšuje, hkrati pa se ji povečuje potencialna energija. V
najvišji točki leta (točka b) se žoga ustavi, zato je tam kinetična energija
enaka nič, potencialna energija pa je največja. Žoga nato pada nazaj proti
tlom (točka c) in kinetična energija se ji spet veča, potencialna pa manjša.
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Slika 4.1: Energetika meta žoge. Sila rok (F ) opravi
delo in žogi dovede energijo. Med letom navzgor se
kinetična energija žoge pretvarja v potencialno, med
padanjem pa se potencialna energija pretvarja nazaj
v kinetično. Ko žoga pade na tla, se njena kinetična
energija pretvori v prožnostno energijo (točka d). Če
lahko trenje z zrakom zanemarimo in je žoga ideal‑
no prožna, se mehanska energija ohrani in bo žoga
odskočila na začetno višino (črtkana črta). V praksi
to ni povsem res, zato bo odskočila do manjše višine
(pikčasta črta).

Tik preden se dotakne tal je njena kinetična energija največja, potencialna
pa enaka nič. Ko žoga pade na tla, se prožno deformira (točka d) in kinetič‑
na energija se pretvori v prožnostno energijo deformacije žoge. Če je žoga
zelo dobra, se vsa prožnostna energija spremeni nazaj v kinetično in se žo‑
ga od tal odbije na enako višino (črtkana črta). V praksi ponavadi to ne
drži in je po odboju na voljo nekaj manj energije kot pred odbojem (pikča‑
sta črta), saj se ob deformaciji nekaj energije spremeni v notranjo energijo
žoge. Več o notranji energiji bomo slišali pri termodinamiki.

Enota za energijo in delo je joule, pri čemer velja 1 J = 1Nm. Ko maso
1 kg dvignemo 1 m visoko, torej opravimo delo približno 10 J. Poleg enote
joule se v določenih situacijah uporablja tudi stara enota za energijo kalorija
(1 cal ≈ 4,2 J), energije na molekularni skali pa pogosto merimo v enoti
elektronvolt (1 eV = 1,6 · 10−19 J).

Pogosto nas zanima, kako hitro se pri opravljanju dela porablja energi‑
ja. To opisuje količina moč (P )

P =
A

t
= Fv , (4.7)

katere enota je vat, 1W = 1 J/s. Drugi izraz v zgornji enačbi dobimo ob
upoštevanju, da je delo sila krat pot, hitrost pa je pot deljeno s časom. Moč
sile pri opravljanju dela je torej odvisna od hitrosti, pri kateri ta sila deluje.

Človeško telo v mirovanju troši približno toliko energije kot 100 W žar‑
nica, med fizično aktivnostjo pa se moč telesa lahko poveča tudi za več kot
10 krat (tabela 4.1).
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aktivnost moč [W]

spanje 83

sedenje 120

počasna hoja 265

kolesarjenje s 15 km/h 400

igranje košarke 800

Tabela 4.1: Poraba energije pri različnih aktivnostih (povzeto po [6]).

V zgornjih izrazih smo predpostavili premo gibanje, seveda pa lahko
delo in energijo definiramo tudi za vrtenje. S pomočjo analogije med pre‑
mim gibanjem in vrtenjem, ki smo jo spoznali v prejšnjih poglavjih (enačbi
2.4 in 3.6), lahko takoj zapišemo, da je delo pri vrtenju enako produktu
navora in kota vrtenja:

A =Mφ , (4.8)

kinetična energija pri vrtenju pa je odvisna od vztrajnostnega momenta
telesa in kotne hitrosti vrtenja:

Wk =
1

2
Jω2 . (4.9)
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Primer 4.1: energetika meta žoge

Za vajo izračunajmo tri enostavne primere spreminjanja energije pri metu žoge
(slika 4.1).
a) Najmanj koliko kalorij porabimo za met košarkarske žoge navpično navzgor za
h0 = 3m nad začetni položaj naših rok? Masa žoge je 624 g.
Med metom na žogo delujemo s silo, zato opravljamo delo in z njim žogi dovede‑
mo energijo (kinetično in potencialno), nato pa se med letom mehanska energija
(enačba 4.6) žoge ne spreminja več (upor zraka zanemarimo). Med letom nav‑
zgor se torej kinetična energija žoge manjša, potencialna veča, njuna vsota pa se
ne spreminja. V najvišji točki leta se žoga ustavi, zato bo tam Wk = 0 in bo vsa
energija v potencialni. Delo, ki smo ga opravili pri metu, lahko torej izračunamo
iz potencialne energije, ki jo ima žoga v najvišji točki leta:

A = Wcelotna = Wp(max) = mgh = 0,624kg · 10m/s2 · 3m = 19 J .

Ker velja 1 cal ≈ 4,2 J, lahko torej zaključimo, da za en met žoge porabimo vsaj
4,5 cal.
b) Kolikšna je bila hitrost žoge, ko smo jo izpustili iz rok, če so se roke med opra‑
vljanjem dela iz začetnega položaja iztegnile za hr = 20 cm?
Ko žogo izpustimo, se začne njena kinetična energija spreminjati v potencialno.
Ker prosto leti le še 2,8m visoko (h− hr), lahko zapišemo:

1

2
mv2 = mg(h− hr)⇒ v =

√
2g(h− hr) .

Ko v izraz vstavimo vrednosti, dobimo: v =
√
2 · 10m/s2 · 2,8m = 7,5m/s.

c) S kolikšno silo med metom roke delujejo na žogo? Predpostavimo, da je bila sila
vseskozi konstantna.
Čeprav bi nalogo lahko rešili le z uporabo sil in pospeškov, si jo poglejmo s stališča
dela in energije. V prejšnji nalogi smo izračunali delo rok, vemo pa tudi na kolikšni
razdalji je bilo to telo opravljeno (hr). Če je bila sila rok konstantna, jo lahko torej
izračunamo kot

F =
A

hr
=

mgh

hr
= 94N .

d) Kolikšno moč so med opravljanjem dela porabljale mišice?
Moč mišic je odvisna od njihove sile in hitrosti, pri kateri delujejo (enačba 4.7). Ker
smo v naši nalogi predpostavili, da je sila konstantna (in da gre torej za enakomer‑
no pospešeno gibanje), bo hitrost linearno naraščala in bo največja v trenutku, ko
izpustimo žogo. Takrat bo moč mišic enaka

P = Fv = 94N · 7,5m/s = 700W ,

povprečna moč, s katero so delovale mišice, pa je pol manjša.

60



Medicinska biofizika (oktober 2023)

Primer 4.2: molekularni motorji

Čeprav smo do sedaj o delu in energiji govorili na nivoju našega makroskopskega
sveta, pa iste zakonitosti veljajo v tudi svetu molekul. Tako je usmerjeno giba‑
nje molekul pogosto povezano s porabo kemične energije (npr. hidrolizo ATP),
ki povzroči konformacijsko spremembo proteina. Proteine, ki se pri tem usmer‑
jeno gibljejo, imenujemo molekularni motorji. Tak primer srečamo npr. pri krčenju
progastih mišic, pri katerih zaradi konformacijskih sprememb v glavah proteina
miozina filamenti miozina drsijo po filamentih aktina (slika A). Podoben primer je
»hoja« proteina kinezina, ki pri znotrajceličnem transportu po mikrotubulih pre‑
naša vezikle (slika B). Velikost sile, ki jo pri tem ustvarja, je približno 5pN, hitrost
gibanja pa do 800nm/s. Poleg molekularnih motorjev, ki povzročajo premo gi‑
banje, obstajajo tudi rotacijski motorji, npr. motorji, ki vrtijo bičke bakterij, ali pa
motorji, ki navijajo DNK v bakteriofage. Rotacijsko gibanje srečamo tudi pri ATP
sintazah, proteinih, ki izkoriščajo prekomembranski gradient protonov za produk‑
cijo ATPja (slika C).

glave miozinskih
 motorjevaktinZ disk

A

B

C

transportni vesikel

kinezin

mikrotubul

smer vrtenja

membrana

miozinski
 filamenti
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4.2 Ravnovesje in potencialna energija
V prejšnjem poglavju smo ravnovesje opisovali s stališča sil in navorov ter
ugotovili, da je v ravnovesju rezultanta sil in navorov na telo enaka nič.
Sedaj bomo naredili še korak naprej ter ravnovesje raziskali tudi s stališča
potencialne energije, pri čemer se nam bo na razumevanje narave odprl
nov zanimiv pogled.

Začeli bomo s preprostim razmislekom o stabilnosti različnih položajev
žoge na hribu (slika 4.2). Na pobočju je žoga v neravnovesnem stanju in se
odkotali po klancu navzdol (položaj b). Ravnovesje lahko dosežemo le na
ravni podlagi, ki jo najdemo ali v dolini ali na vrhu hriba. Pri tem s stališča
stabilnosti ravnovesja razlikujemo tri možnosti

• Če je žoga na dnu najnižje doline (položaj a), je v stabilnem ravnovesju.

• Če je žoga na vrhu (položaj c), je sicer v ravnovesju, a jo bo že naj‑
manjša zunanja sila spravila iz ravnovesja in žoga se bo odkotalila v
dolino. Takemu ravnovesju pravimo nestabilno ravnovesje.

• Če je žoga v dolinici pod vrhom (položaj d), se po majhni zunanji
motnji sicer vrne v isti položaj, če pa je motnja večja, se lahko odkotali
v kakšno nižjo dolino, npr. v položaj a. Položaj d se imenuje lokalno
stabilno ali metastabilno stanje.

a b c d

Slika 4.2: Različna stanja žoge na hriboviti površini: stabilno ravnovesje (lega
a), neravnovesno stanje (lega b), nestabilno ravnovesje (lega c) in lokalno stabilno
ravnovesje (lega d). V splošnem velja, da je sistem v ravnovesju, če se s časom ne
spreminja, če pa ni v ravnovesju, se spreminja tako, da se ravnovesju približuje.
Velikost sile, ki sistem vleče proti ravnovesju, je sorazmerna strmini klanca.

Če na sliko 4.2 pogledamo s stališča potencialne energije, odkrijemo zani‑
mivo pravilo: stabilno ravnovesje je stanje z globalno najnižjo potencialno
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energijo, nestabilno ravnovesje je stanje z lokalnim maksimumom energi‑
je, metastabilno stanje pa je stanje pri katerem ima potencialna energija le
lokalni minimum. Matematično bi rekli, da je v ravnovesnih stanjih od‑
vod potencialne energije po spremembi položaja enak nič. V neravnove‑
snih stanjih odvod ni enak nič in žogo vleče proti nižji potencialni energiji,
pri čemer je velikost sile sorazmerna strmini klanca. Pravimo tudi, da si‑
la kaže v nasprotni smeri od gradienta potencialne energije (matematično
obravnavo navajamo v MaFijskem primeru 4.1).

Gornji razmislek je temeljil na preprostem primeru žoge in gravitacijske
potencialne energije, vendar pa se za njim skriva ena od globljih zakonitosti
narave:

Čemehanski sistemni v ravnovesju in ga prepustimo samega sebi,
se bo spreminjal proti nižji potencialni energiji. Ravnovesje bo
dosegel, ko bo potencialna energija najnižja.

Poleg gravitacijske potencialne energije obstajajo namreč tudi druge vrste
potencialne energije, ki imajo podobne lastnosti, v splošnem so vse odvi‑
sne le od položaja sistema (in ne od gibanja), in z vsako od njih je povezana
ustrezna konservativna sila. Lastnost potencialne energije imata npr. pro‑
žnostna energija vzmeti (enačba 4.4 in slika 4.3A) in pa interakcijska ener‑
gija med dvema atomoma oz. molekulama (slika 4.3B). V biokemiji rav‑
novesje definira oblika energije z imenom prosta entalpija, ki ima podobne
lastnosti kot mehanske potencialne energije in jo bomo zato pri termodi‑
namiki imenovali termodinamski potencial.
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r

x
r0

WD

WpWp

A B

Slika 4.3: Dva primera potencialnih energij. A) Energija vzmeti (enačba 4.4) je
odvisna le od odmika vzmeti od ravnovesja (x) in ima vse lastnosti potencialne
energije. Najmanjša je v ravnovesju, sila vzmeti pa vedno kaže proti ravnovesju.
Velikost sile lahko iz grafa razberemo kot strmino (odvod). B) Primer interak‑
cijske energije med dvema atomoma oz. molekulama v odvisnosti od razdalje
med njima. Če sta atoma zelo daleč stran, se interakcijska energija praktično ne
spreminja z razdaljo, kar po drugi strani pomeni, da med njima ni sile (odvod je
praktično 0). Ko se atoma približujeta, se energija zmanjšuje in med njima torej
deluje privlačna sila. Razdalja r0 označuje ravnovesno razdaljo med atomoma,
tj. razdaljo, pri kateri je energija najmanjša in pri kateri je rezultanta sil na atoma
enaka nič (atoma se niti ne privlačita niti odbijata). Če atoma potisnemo skupaj na
razdaljo, ki je manjša od ravnovesne, se elektroni njunih zunanjih orbital začnejo
prekrivati in atoma se začneta odbijati. Globlja kot je dolina, močnejša je vez med
atomoma. Če hočemo atoma ločiti (ju iz ravnovesne razdalje oddaljiti daleč nara‑
zen), porabimo disociacijsko energijo WD. Če pogledamo interakcijsko energijo v
bližini ravnovesja, vidimo, da je njena oblika podobna paraboli, ki smo jo srečali
pri vzmeti. Zato si lahko za majhne odmike od ravnovesja atome v molekuli
predstavljamo kot kroglice, ki so med seboj povezane z majhnimi vzmetmi.
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MaFijski primer 4.1: sila in potencialna energija

Konservativna sila in ustrezna potencialna energija sta dve plati istega kovanca.
Če poznamo eno, lahko izračunamo drugo in obratno. Konservativna sila vedno
kaže v smer, v kateri bo potencialna energija čim manjša. Matematično zvezo med
njima zapišemo kot

F⃗ = −∇Wp = −(dWp

dx
,
dWp

dy
,
dWp

dz
) , (4.10)

pri čemer smo uporabili matematično operacijo ∇, ki jo imenujemo gradient in je
posplošitev odvoda. Odvod smo do sedaj srečali pri funkcijah ene spremenljivke
f(x), če pa imamo opraviti s funkcijo več spremenljivk (potencialne energije so
v splošnem lahko odvisne od več koordinat), njen naklon izračunamo tako, da
odvajamo po vsaki spremenljivki posebej in rezultate združimo v vektor.
Kot preprost primer zveze med silo in energijo lahko služi izračun Hookovega
zakona (enačba 3.4) iz izraza za prožnostno energijo vzmeti. Energija vzmeti je
odvisna le od ene koordinate, zato gradienta pravzaprav ne bomo potrebovali in
bo dovolj navadno odvajanje:

F = −dWp

dx
= −d(½kx2)

dx
= −kx . (4.11)

Negativni predznak pomeni, da sila vzmeti vedno kaže proti ravnovesju (pri po‑
zitivnih vrednostih x bo sila kazala proti negativnim vrednostim x ter obratno).
Če predznak minus v Hookovem zakonu izpustimo, z njim opišemo silo, s katero
vlečemo vzmet, ki je nasprotno enaka sili vzmeti.
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Poglavje 5

Nihanje

Veliko naravnih pojavov se periodično ponavlja. Dan se izmenjuje z nočjo,
plima se izmenjuje z oseko, pri kroženju pa se kljub neprestanemu gibanju
vedno znova znajdemo na začetku poti. Dokler smo živi nam tudi srce pe‑
riodično bije. Periodično nihajo tudi vse molekule, ki sestavljajo naš svet.
V tem poglavju se bomo spoznali z osnovnimi značilnostmi preprostega
nihanja (slika 5.1), kasneje pa nam bo to znanje pomagalo tudi pri razume‑
vanju bolj zapletenih periodičnih pojavov.

B DA

C

Slika 5.1: Nekaj primerov periodičnih pojavov. (A) Periodično bitje srca se lepo
vidi na elektrokardiogramu, na katerem prikažemo spreminjanje električne na‑
petosti na površini telesa v odvisnosti od časa. (B) Vzmetno nihalo, pri katerem
niha na vzmet pritrjena masa. (C) Nihanje molekule O2. Atoma nista togo vezana
eden na drugega, zato lahko nihata okoli ravnovesne lege. Tako nihanje si lahko v
prvem približku predstavljamo kot nihanje majhnega vzmetnega nihala. (D) Te‑
žno nihalo (imenujejo ga tudi fizično nihalo), pri katerem niha na os obešeno togo
telo. Podvrsta težnega nihala je matematično nihalo, pri katerem niha na vrvico
obešena utež, in ki ga je Santorio Santorio uporabil za svoj pulsilogium (slika 1.1).
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5.1 Harmonično nihanje
Harmonično nihanje je tisto, ki ga lahko opišemo s funkcijo sinusne oblike.
Najpreprostejši primer harmoničnega nihanja je nihanje vzmetnega nihala
na podlagi brez trenja (slika 5.2B). Kot smo spoznali v prejšnjem poglavju,
nam lahko z vzmetjo povezane mase služijo kot dober približek za opiso‑
vanje atomov v molekuli, zato si lahko tudi nihanje molekul predstavljamo
kot nihanje majhnih vzmetnih nihalc.

Če vzmet vzmetnega nihala raztegnemo in spustimo, bo nihalo sinusno
zanihala okoli ravnovesja, pri čemer se bo energija pretvarjala iz kinetične
energije uteži v prožnostno energijo vzmeti ter nazaj. Brez prisotnosti tre‑
nja se bo celotna energija ohranjala in gibanje se bo periodično ponavljalo.
Čas ene periode t0 imenujemo nihajni čas, frekvenca nihanja ν0 pa nam pove,
koliko nihajev naredi nihalo v eni sekundi in je obratna vrednost nihajnega
časa, ν0 = 1/t0. Spomnimo se, da smo enako definicijo smo srečali že pri
opisovanju kroženja, en. 2.5.

A Bx0

-x0

0.5 1 1.5 2 2.5 3
1

0.5

0.5

0

1

t/t0

x/x0

Slika 5.2: A) Shematični prikaz nihanje vzmetnega nihala na podlagi brez trenja,
ki je najpreprostejši primer harmoničnega nihanja. B) Graf, ki prikazuje odmik
vzmetnega nihala od časa, je sinusne oblike. Modra črta prikazuje nihanje nihala,
ki je bilo ob času t = 0 ravno v ravnovesni legi, črtkana rdeča črta pa prikazuje
nihanje nihala, ki je bilo ob času t = 0 v skrajni desni legi. Maksimalni odmik
nihanja x0 imenujemo amplituda nihanja, čas enega nihaja t0 pa nihajni čas.

Kako nihanje opisati z matematično formulo? V naši zbirki matematič‑
nih funkcij je sinus najpreprostejša periodična funkcija, zato si pomagajmo
z njo. Poznavanje lastnosti sinusne funkcije nam pomaga, da uganemo
enačbo, ki pri harmoničnem nihanju opisuje odvisnost odmika nihala od
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časa:

x(t) = x0 sin(ω0t) . (5.1)

Prepričajmo se, da zgornja enačba zares dobro opiše harmonično nihanje.
Ker je lahko vrednost sinusne funkcije največ ena, bo največji odmik od rav‑
novesja enak x0. Največji odmik od ravnovesja imenujemo tudi amplituda
nihanja. Vpeljali smo tudi lastno krožno frekvenco nihala, ki je definirana z
zahtevo, da en nihajni čas ustreza eni periodi sinusne funkcije 2π. Podobno
kot pri kroženju (enačba 2.6), tudi pri nihaju velja: ω0t0 = 2π oziroma

ω0 = 2πν0 . (5.2)

Enačba 5.1 tako res lepo opiše periodično nihanje – ko čas narašča, se veča
vrednost v oklepaju sinusa, in ko čas doseže vrednost t0 tudi vrednost v
oklepaju sinusa doseže periodo 2π, enako kot na sliki 5.2B.

Izkaže se, da je v splošnem harmonično vsako nihanje, pri katerem je
sila, ki sistem vleče nazaj proti ravnovesju, sorazmerna odmiku od ravno‑
vesja. Pomembna lastnost harmoničnega nihanja je, da je frekvenca niha‑
nja notranja lastnost nihala, ki ni odvisna od začetnega odmika od ravnoves‑
ja ter se s časom ne spreminja. Za vzmetno nihalo tako velja, da je lastna
frekvenca nihanja odvisna od njegove mase in trdote vzmeti (glej MaFijski
primer 5.1):

ω0 =

√
k

m
. (5.3)

Atomi v molekuli prav tako nihajo s sebi lastnimi frekvencami, ki so od‑
visne od mase atomov in interakcij med njimi.

Oglejmo si še nihanje visečega togega telesa (slika 5.1D). Tako nihalo
imenujemo težno ali fizično nihalo in je podobno matematičnemu, le da
je pri slednjem vsa masa nihala zbrana v eni točki. Krajša izpeljava poka‑
že (MaFijski primer 5.1), da je pri majhnih odmikih od ravnovesja tudi to
nihanje harmonično z lastno krožno frekvenco
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ω0 =

√
ℓtmg

J
, (5.4)

kjer je m masa težnega nihala, J njegov vztrajnostni moment ter ℓt razda‑
lja težišča nihala od osi. Pri matematičnem nihalu je vsa masa zbrana na
razdalji ℓt = l, zato pri njem velja J = ml2 oz. ω0 =

√
g/l.
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MaFijski primer 5.1: izpeljava lastne frekvence nihanja

Pokažimo, da je lastna krožna frekvenca vzmetnega nihala enaka ω0 =
√
k/m.

Začnemo pri 2. Newtonovem zakonu, ki pravi, da je sila na maso v vsakem tre‑
nutku sorazmerna pospešku mase. Za silo vzmeti velja Hookov zakon (enačba
3.4), zato lahko zapišemo za silo na maso zapišemo −kx(t) = ma(t) (negativni
predznak smo zapisali, ker sila na maso pri pozitivnih x vleče proti negativnim
vrednostim). Ker je pospešek drugi odvod odmika po času (a = x’’), bo za vzme‑
tno nihalo v vsakem trenutku veljala enačba

x’’(t) = − k

m
x(t) . (5.5)

Za sinusno nihanje poznamo odvisnost odmika od časa (en 5.1), zato lahko brez
težav izračunamo prvi in drugi odvod odmika po času ter preverimo če ustreza
enačbi 5.5. Prvi odvod je

x’(t) = x0ω0 cos(ω0t) , (5.6)

drugi odvod pa je torej
x’’(t) = −x0ω

2
0 sin(ω0t) . (5.7)

Če primerjamo zadnjo enačbo z enačbo 5.1, ugotovimo, da pri sinusnem nihanju
torej velja

x’’(t) = −ω2
0x(t) (5.8)

Iz primerjave enačb 5.5 in 5.8 lahko torej zaključimo, da sinusno nihanje zares
ustreza 2. Newtonovem zakonu za vzmetno nihalo, če je le ω2

0 = k/m, oziroma,
če je ω0 =

√
k/m. Podobno razmišljanje velja v vseh primerih, pri katerih je drugi

odvod odmika po času sorazmeren negativni vrednosti odmika.
Raziščimo še nihanje težnega nihala. Če težno nihalo iz ravnovesja izmaknemo za
kot ϕ, ga bo navor sile teže vlekel nazaj v ravnovesje, M = −mgℓt sinϕ (če bo kot
pozitiven, bo navor negativen). Navor je po 2. Newtonovem zakonu sorazmeren
kotnemu pospešku, M = Jα, zato lahko zapišemo:

ϕ’’(t) = −mgℓt
J

sinϕ(t) . (5.9)

Vidimo torej, da fizično nihalo v splošnem ne niha harmonično, saj drugi odvod
odmika po času ni sorazmeren odmiku, ampak sinusu odmika. Če pa so odmiki
majhni, je sinus kota kar približno enak kotu, sinϕ ≈ ϕ, in velja:

ϕ’’(t) = −mgℓt
J

ϕ(t) . (5.10)

Pri majhnih odmikih od ravnovesja zato tudi fizična nihala (in matematično niha‑
lo) nihajo približno harmonično, krožno frekvenco takega nihanja pa razberemo
iz zgornje enačbe ω0 =

√
mgℓt/J .
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5.2 Dušenje, vzbujanje in resonanca

Pri nihanju realnih sistemov so pogosto prisotne sile trenja. Če takega ni‑
hanja dodatno ne vzbujamo, se bo zaradi trenja energija nihanja počasi
manjšala, dokler se nihanje ne bo povsem zadušilo. Izkaže pa se, da je
tudi pri dušenem harmoničnem nihalu frekvenca nihanja lastnost sistema
ter ni odvisna od amplitude nihanja in se s časom ne spreminja.

Dušeno nihanje je najbolj raziskano v sistemu, pri katerem je sila trenja
sorazmerna hitrosti. Kasneje bomo v poglavju o viskoznosti videli, da taka
sila trenja nastopa pri gibanju v tekočinah (slika 5.3A). Jakost dušenja v ta‑
kem sistemu opišemo s koeficientom dušenja β. Daljša analiza pokaže, da pri
takem nihanju amplituda nihanja zamira eksponentno s časom: x0 ∝ e−βt

(večje kot je dušenje, hitreje nihanje zamira). Frekvenca dušenega nihanja
se s časom ne spreminja, le malo manjša je kot v nedušenem primeru:

ωd =
√
ω2
0 − β2 . (5.11)

Če je sila trenja zelo velika in je β > ω0, nihalo sploh ne zaniha, ampak se
le eksponentno vrača proti ravnovesju.

V splošnem sila trenja ni nujno sorazmerna hitrosti. Primer dušenega
nihanja s takim trenjem je nihanje mase na vzmeti na podlagi s trenjem
(slika 5.3B). V takem primeru se bo amplituda nihanja s časom manjšala
kar linearno, frekvenca nihanja pa se zaradi dušenja ne spremeni. Tudi v
tem primeru velja, da je lastna frekvenca nihanja lastnost nihala in da se
amplituda zmanjšuje tem hitreje, čim večje je dušenje.

Če želimo vzbuditi nihanje mirujočega nihala ali pa le ohranjati nihanje
dušenega nihala, mu moramo dovajati energijo. Izkaže se, da za vzbujanje
nihala ne potrebujemo velike sile, če le s silo delujemo v pravih trenutkih.
To lastnost nihal spozna vsak otrok, ki se je uči guganja na gugalnici (sli‑
ka 5.4). Za uspešno guganje mora težišče svojega telesa premikati z ravno
pravo frekvenco, če pa bo noge premikal prehitro ali prepočasi, se gugalni‑
ca ne bo zagugala. Prava frekvenca za vzbujanje je ravno lastna frekvenca
nihala. Pojav, ko nihalo vzbujamo z njegovo lastno frekvenco imenujemo
resonanca. Če nihalo vzbujamo z resonančno frekvenco, mu v vsakem niha‑
ju dovedemo dodatno energijo, zato lahko amplituda nihanja zelo naraste.
Pri tem velja, da bolj kot je sistem dušen, nižjo resonančno amplitudo do‑
seže (slika 5.4B).
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Slika 5.3: Dva primera dušenega nihanja. (A) Pri gibanju v tekočinah je sila upora
sorazmerna hitrosti gibanja. Pri takem dušenem nihanju se amplituda manjša ek‑
sponentno s časom. (B) Če je sila trenja konstantna, kot npr. pri trenju na podlagi,
se amplituda nihanja duši linearno s časom. V obeh primerih se nihanji čas oz.
frekvenca nihanja s časom ne spreminjata.

5.3 Nihanje molekul in spektroskopija
Interakcije med atomi v molekulah si lahko v predstavljamo kot drobne
vzmeti, ki atome povezujejo med seboj (slika 4.3). Podobno, kot zaniha
vzmetno nihalo, lahko zanihajo tudi atomi v molekuli, frekvenca njihove‑
ga nihanja pa je v skladu z enačbo 5.3 odvisna od mase atomov in jakosti
interakcije med njimi (vrednost konstante vzmeti k v tem primeru razbe‑
remo iz strmine potencialne jame medatomske interakcije v okolici ravno‑
vesja, slika 4.3B). Zaradi majhne mase atomov so lastne frekvence nihanja
molekul zelo visoke, tipično nekaj 10 THz (1013 Hz), kar so frekvence, ki
ustrezajo infrardečemu elektromagnetnemu valovanju.

Preprosto vzmetno nihalo niha le v eni smeri in ima le eno lastno fre‑
kvenco, gibanje atomov v molekuli pa je lahko veliko bolj raznoliko, saj
je število neodvisnih načinov nihanja molekule povezano s številom nje‑
nih prostostnih stopenj. V splošnem se lahko vsak atom v molekuli giblje
neodvisno v vseh treh smereh, zato je v molekuli z N atomi število vseh
prostostnih stopenj enako 3N . Od teh jih je za nihanje na voljo toliko, ko‑
likor se jih ne porabi za gibanje težišča molekule in njene rotacije okoli te‑
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Slika 5.4: Iz izkušnje na gugalnici vemo, da je za vzbujanje nihala potrebna ravno
prava frekvenca, ki jo imenujemo resonančna frekvenca. Če noge premikamo pre‑
hitro ali prepočasi, gugalnica ne bo zanihala. Diagram na desni prikazuje, kako
je amplituda vzbujenega nihanja odvisna od frekvence vzbujanja ω, če je lastna
frekvenca nihanja ω0. Če je frekvenca vzbujanja majhna, bo nihalo nihalo kar z
amplitudo vzbujanja. Največjo amplitudo nihanja nihala dosežemo v resonanci,
ko nihalo vzbujamo ravno z njegovo lastno frekvenco (ω/ω0 = 1), če pa nihalo
zbujamo s preveliko frekvenco, bo vzbujena amplituda nihanja zelo majhna. Pol‑
na črta prikazuje resonanco v sistemu z majhnim dušenjem, črtkana pa resonanco
v sistemu z velikim dušenjem.

žišča. Nelinearne molekule imajo tri prostostne stopnje gibanja težišča in
tri rotacije, zato bo pri njih število neodvisnih nihanj in lastnih frekvenc
enako 3N − 6. Linearne molekule imajo eno rotacijo manj, zato bo število
neodvisnih nihanj pri njih 3N−5. Molekula kisika tako niha le na en način
(slika 5.1C), katerega lastna frekvenca je 47 THz, molekula vode pa lahko
niha na tri neodvisne načine in ima tri lastne frekvence: 48 THz, 110 THz
in 113 THz (slika 5.5). Na lastne frekvence molekule lahko preko interak‑
cij oziroma dušenja vpliva tudi kemijsko okolje molekule, zato ima npr.
prosta molekula vode malo drugačne lastne frekvence od molekule vode
v tekočem stanju.

Lastne frekvence molekule so neposredno povezane z njeno atomsko
sestavo, zato je spekter lastnih frekvenc nihanja molekule njen »prstni od‑
tis«. Z analizo lastnih frekvenc nihanja molekul v snovi lahko torej ugo‑
tovimo kemijsko sestavo snovi. S tako analizo se ukvarja široko področje
znanosti, ki ga imenujemo spektroskopija. Poznamo veliko različnih spek‑
troskopskih metod, ki se z razvojem tehnologije tudi neprestano razvijajo.
V zadnjih letih se intenzivno raziskuje uporaba spektroskopskih tehnik za
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Slika 5.5: Molekula vode lahko niha na tri neodvisne načine. V prvem primeru je
lastna frekvenca nihanja 110 THz, v drugem 48 THz, v tretjem pa 113 THz.

medicinsko diagnostiko, saj imajo bolezensko spremenjena tkiva nekoliko
drugačno kemijsko sestavo od zdravih in jih lahko razločimo z natančno
spektroskopsko analizo. Ena od obetajočih spektroskopskih tehnik je t. i.
Ramanova spektroskopija, pri kateri nihanje molekul v vzorcu vzbudimo
z laserjem in nato z detektorjem s strani »poslušamo« njihove resonančne
frekvence (slika 5.6). Ker je pri tej tehniki dovolj, da vzorec le osvetlimo z
infrardečim laserjem in analiziramo odboje, jo bo mogoče vgraditi tudi v
endoskopske naprave.
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Slika 5.6: A) Shematski prikaz delovanja Ramanove spektroskopije. Vzorec vzbu‑
dimo z laserjem in analiziramo svetlobo, ki se z vzorca siplje v okolico in nosi in‑
formacijo o vibracijskem spektru molekul v vzorcu. Ker ima vsaka vrsta molekul
svoj značilni vibracijski spekter, lahko na tak način določimo kemijsko sestavo
vzorca. B) Primer vibracijskih spektrov, izmerjenih v različnih možganskih vzor‑
cih [7]. Čeprav so si spektri precej podobni, pa lahko z natančno analizo ločimo
tumor od zdravih možganov, kar je neprecenljiva informacija za nevrokirurga, ki
mora iz možganov odstraniti vse celice tumorja, zdrave celice pa mora pustiti na
miru.

75



Poglavje 6

Sile in tlaki v snovi

Dosedaj smo obravnavali le sile, ki v eni točki delujejo na togo telo. Če sile
na telesa delujejo preko vse površine je situacija malo bolj zapletena, še po‑
sebej, če delujemo na tekočine ali trdne snovi, ki se lahko preoblikujejo. V
tem razdelku si bomo ogledali nekaj splošnih pojmov, s katerimi opisuje‑
mo obnašanje teles pod vplivom sil, kasneje pa bomo obnašanju tekočin in
trdnih snovi pod vplivom sil namenili kar samostojna poglavja (poglavja
7, 8 in 9).

6.1 Tri glavne vrste snovi
Snovi pogosto razdelimo na tri osnovne skupine: pline, kapljevine in trdne
snovi. Glavne razlike njimi so ponazorjene na sliki 6.1, dodaten vpogled
pa dobimo, če se spustimo na molekularni nivo. V plinih so interakcije
med molekulami prešibke, da bi jih držale skupaj, zato se molekule plina
gibljejo neodvisno druga od druge, plin pa napolni vso dostopno prostor‑
nino. V kapljevinah so privlačne interakcije med molekulami že dovolj
močne, da jih držijo skupaj, a se molekule lahko vseeno gibljejo ena mi‑
mo druge. Kapljevine imajo zato svojo prostornino in površino (gladino),
hkrati pa lahko tečejo ter svojo obliko prilagodijo okolici. V trdnih snoveh
so interakcije med molekulami tako velike, da so molekule trdno vpete ena
zraven druge in jih lahko premaknejo šele velike zunanje sile.

Kasneje bomo videli, da delitev na tri skupine snovi dobro velja le v
preprostih primerih, veliko snovi (tudi mnoga biološka tkiva) pa ima npr.
lastnosti tako trdnih kot tekočih snovi.
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Slika 6.1: Tri osnovne vrste snovi: plini, kapljevine in trdne snovi. Plini napolnijo
vso dostopno prostornino in nimajo svoje oblike. Molekule kapljevine se držijo
skupaj, a se lahko premikajo ena mimo druge, zato imajo svojo prostornino in
gladino. Molekule v trdnih snoveh so trdno vpete ena ob drugo, zato trdne snovi
obdržijo svojo obliko. Plini in kapljevine lahko tečejo, zato jih imenujemo tudi
tekočine.

Ena najosnovnejših lastnosti snovi je gostota, ki pove, kolikšno maso
ima določena prostornina snovi

ρ = m/V . (6.1)

Tako pri trdnih snoveh kot pri kapljevinah so si molekule blizu skupaj,
zato je njihova gostota v prvi vrsti odvisna od molekulske mase atomov, ki
snov sestavljajo in je za oboje približno istega reda velikosti. Gostota vode
je npr. 1 kg na en liter, gostota aluminija je le 3 krat večja, gostota zlata,
ki je ena najgostejših vsakdanjih snovi, pa je približno 20 krat večja. Živo
srebro, ki je najgostejša kapljevina, ima gostoto približno 13,5 krat večjo
od vode in je gostejši od večine trdnih snovi. Pri plinih so molekule daleč
narazen, zato so plini pri standardnih pogojih približno 1000 krat redkejši.
Masa enega litra zraka pri standardnih pogojih je tako le nekaj več kot en
gram.
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6.2 Sile, tlaki, napetosti, stisljivost
Sile med razsežnimi telesi delujejo preko njihovih površin in so v splošnem
zelo zapletene, saj imajo lahko v vsaki točki površine drugačno velikost in
smer. Za nas bo dovolj, da si ogledamo le dva najpreprostejša primera
delovanja sile na telo: če sile delujejo pravokotno na njegovo površino ali
vzporedno s površino. V obeh primerih je vpliv sile na telo odvisen od
tega, na kako veliki površini je sila razporejena.

Če je sila pravokotna na površino govorimo o tlaku (slika 6.2A):

p =
F

S
, (6.2)

kjer je p tlak, S pa površina, pravokotno na katero deluje sila F . SI enota
za tlak je pascal, 1Pa = 1N/m2. Tlak ima podoben vpliv na vse tri vrste
snovi: če zunanja sila deluje proti snovi, jo stiska, če pa deluje na ven, jo
razpenja.

SS S

F

tlak strig

F

A B

Slika 6.2: Dva osnovna načina delovanja sil na snovi. Če sila deluje pravokotno
na površino in molekule snovi stiska ali razpenja, govorimo o tlaku (p), če pa je
sila vzporedna s površino in molekule snovi potiska eno mimo druge, govorimo
o strigu oz. strižni napetosti (τ ). V obeh primerih je učinek odvisen od velikosti
sile na velikost površine (p = F/S oz. τ = F/S), zato imata obe količini isto enoto
pascal.

Če zunanja sila na telo deluje vzporedno s površino, govorimo o strigu
(slika 6.2B). Če na trdne snovi delujemo s strižno silo, se deformirajo, pli‑
ni in kapljevine pa se strižni sili ne morejo upirati in pod njenim vplivom
stečejo. Plini in kapljevine se ravno zato imenujejo tudi tekočine. Kot bomo
videli kasneje, je tudi vpliv strižnih sil povezan s tem, na kako veliki po‑
vršini delujejo, le da v tem primeru ne govorimo o tlaku, temveč o strižni
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napetosti τ = F/S, ki pa ima enako enoto kot tlak.
V pomoč pri razumevanju razlik med tlakom in strigom nam je lahko

naslednja primerjava. Tlak molekule snovi potiska skupaj (ali vleče nara‑
zen), zato je njegova posledica sprememba prostornine snovi. Nasprotno
strig molekule potiska eno mimo druge in zaradi tega ne povzroči spre‑
membe prostornine. Od tod strigu tudi ime: strig »striže« enako kot rezili
pri škarjah, ki zdrsita eno mimo drugega.

S tlakom lahko torej snovi stiskamo ali razpenjamo. Lastnost, ki pove,
kako težko je neko snov stisniti, se imenuje stisljivost (χ) in je definirana z
naslednjo enačbo

∆V

V
= −χ∆p . (6.3)

Stisljivost snov torej povezuje relativno spremembo prostornine s spre‑
membo tlaka na snov. Enota za stisljivost je Pa−1. Večja kot je stisljivost
snovi, lažje jo lahko stisnemo. Stisljivosti trdnih snovi in kapljevin so pona‑
vadi majhne, saj so njihove molekule že v normalnih pogojih blizu skupaj.
Če želimo kapljevino ali trdno snov stisniti za 1 %, potrebujemo zelo velik
tlak, tipično reda velikosti 108 Pa oziroma približno 1000 barov (1 bar enak
normalnemu zračnemu tlaku, 1 bar = 105 Pa), kar je za normalne razmere
zelo veliko. Veliko preprostih trdnih snovi in kapljevin, tudi npr. voda,
je torej praktično nestisljivih in njihova gostota ni odvisna od delovanja
zunanjih sil. Stisljivost plinov pri standardnih pogojih je po drugi strani
približno 105 krat večja in jih lahko stisnemo brez težav.

6.3 Hidrostatski tlak, vzgon
Molekule v tekočinah se lahko premikajo, zato se med stiskanjem tekočine
preuredijo tako, da se tlak povsod v tekočini poveča enako (če se ne bi
bil, bi se molekule gibale od večjega proti manjšemu tlaku). To lastnost
je ob preučevanju hidravličnih sistemov prvi zapisal znameniti francoski
znanstvenik Blaise Pascal, zato jo danes imenujemo Pascalov zakon (slika
6.3A). Tlak v tekočini ima zato enako vrednost v vseh smereh in je skalarna
količina.

S Pascalovim zakonom sta tesno povezani dve pomembna lastnosti te‑
kočin: hidrostatski tlak in vzgon. Zaradi sile teže namreč vsak del tekočine
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Slika 6.3: A) Pascalov zakon: če tekočino stiskamo, se tlak v njej enako poveča
po vsej prostornini. Na osnovi tega principa deluje hidravlični prenos sile, pri
katerem majhna sila na strani z majhno površino povzroči veliko silo na strani z
veliko površino, saj je tlak povsod enak p = F1/S1 = F2/S2 ⇒ F2 = S2

S1
F1. B)

Hidrostatski tlak: zaradi sile teže tekočine tlak v njej narašča z globino.

s svojo težo enakomerno pritiska na površino pod seboj, kar povzroči nara‑
ščanje tlaka z globino oz. t. i. hidrostatski tlak. Pri nestisljivih kapljevinah je
gostota (ρ) neodvisna od tlaka, zato lahko hidrostatski tlak brez težav izra‑
čunamo (slika 6.3B): pri globini h na spodnjo ploskev s površino S pritiska
teža kapljevine nad njo, ki je enaka

Fg = mg = ρV g = ρShg , (6.4)

pri čemer smo upoštevali, da je masa tekočine enaka produktu gostote in
prostornine, prostornina tekočine pa produktu površine osnovne ploskve
in globine. Tlak je sila na površino, zato se pri izračunu tlaka S pokrajša in
je naraščanje tlaka odvisno le od globine in gostote tekočine (p = Fg/S =
ρgh). Ponavadi na zgornjo površino kapljevine deluje še zunanji zračni tlak
p0, zato tlak v tekočini z globino narašča kot

p = p0 + ρgh . (6.5)

Hidrostatski tlak je torej odvisen le od globine v tekočini in je neodvisen
od oblike in velikosti posode (slika 6.4).

Enačba 6.5 velja za vse nestisljive kapljevine, npr. za vodo, kri in živo
srebro. Enačbo dobro poznajo potapljači, ki vedo, da se tlak v vodi na vsa‑
kih 10 m globine poveča za približno 1 bar (1000 kg/m3 · 9,8m/s2 · 10m ≈
105 Pa = 1 bar). Gostota živega srebra je približno 13,5 krat večja od go‑
stote vode, zato bi bil tlak na isti globini v živem srebru 13,5 krat večji kot
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Slika 6.4: V vseh šestih posodah je enaka višina vode, v kateri posodi pa je tlak na
dnu največji? Če ni drugih zunanjih sil razen sile teže, je tlak v tekočini odvisen
le od višine tekočine in je torej v vseh posodah enak! Tudi krvožilje je neke vrste
»posoda za kri« , zato je krvni tlak v nogah večji kot v glavi.

v vodi. V preteklosti so za merjenje krvnega tlaka uporabljali živosrebr‑
ne sfigmomanometre, pri katerih se tlak meri preko tlaka, ki ga pod seboj
ustvari stolpec živega srebra z izbrano višino (primer 6.1). V medicini se
za merjenje krvnega tlaka zato še danes uporablja enota mmHg (milimeter
živega srebra). Včasih se tlak meri tudi z višino ustreznega stolpca vode,
pri čemer se uporabi enota mmH2O. Na osnovi razmerja med gostoto ži‑
vega srebra in gostoto vode lahko kar brez računanja uganemo, da velja
1mmHg ≈ 13,5mmH2O.

Plini so stisljivi, zato je njihova gostota odvisna od tlaka. Tlak v plinih
se z višino ne spreminja po enačbi 6.5, ampak je pri njih spreminjanje tlaka
z višino eksponentno (več o tem še pri termodinamiki).

Podoben razmislek, kot smo ga imeli pri hidrostatskem tlaku, nam po‑
maga razumeti tudi znameniti Arhimedov zakon vzgona. Če v tekočino
potopimo telo, deluje tekočina na spodnjo površino telesa z višjim tlakom
kot na zgornjo površino (spodnja površina telesa je na večji globini, kjer je
tlak višji), stranske sile tlaka na telo pa so si nasprotno enake in se medse‑
bojno odštejejo. Rezultanta sil na telo torej deluje navpično navzgor in se
imenuje sila vzgona. Če predpostavimo, da ima telo preprosto kvadrasto
obliko, lahko z enakim računom, kot smo ga opravili za hidrostatski tlak,
izračunamo, da je sila vzgona enaka teži izpodrinjene tekočine:

Fvzgon = Vteloρtekočinag . (6.6)

Arhimedov zakon uporabljajo npr. fizioterapevti, ki računajo obremenitve
gležnja ali kolena med telovadbo v bazenu – višje, kot nam sega voda v
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bazenu, večja je sila vzgona in manjša je sila v sklepu.

Primer 6.1: zakaj zdravniki krvni tlak merijo v enoti mmHg?

Zdravniki pri merjenju tlaka pogosto ne uporabljajo enote Pa, temveč enoto mmHg
(milimeter živega srebra), ki je po velikosti enaka tlaku, ki ga pod seboj ustvar‑
ja 1mm živega srebra. Z upoštevanjem enačbe 6.5 hitro izračunamo zvezo med
mmHg in Pa:

1mmHg = ρHggh = 13534 kg/m3 · 9,8m/s2 · 10−3 m ≈ 133Pa .

Velja tudi, da je 760mmHg ≈ 1 atm. Enoti mmHg je približno enaka tudi stara
enota za tlak torr.
Enota mmHg izvira iz časov prvih merilcev tlaka (manometrih oz. barometrih),
ki so velikost tlaka določali preko hidrostatskega tlaka, ki ga pod seboj ustvarja
stolpec živega srebra z določeno višino. Kot primer si lahko pogledamo delovanje
kliničnega živosrebrnega sfigmomanometra (gr. sphygmos pomeni pulz), ki je
shematično prikazan na spodnji sliki:

h

p

p= ghHgρ

p

Hg

V neprodušno zaprti posodi je živo srebro, v katerega je potopljena steklena cevka,
zrak nad živim srebrom v posodi pa je po gumijasti cevki povezan z manšeto. Ko z
gumijasto žogico načrpamo zrak v manšeto, povečamo tlak v manšeti, enako pa se
poveča tudi tlak nad živim srebrom v posodi, zaradi česar se ustrezno dvigne živo
srebro v cevki. Povečanje tlaka zraka v manšeti je torej enako tlaku, ki ga pod seboj
ustvarja stolpec živega srebra v cevki, zato lahko velikost tlaka v manšeti odčitamo
kar neposredno iz višine stolpca živega srebra v mm. Če je višina stolpca živega
srebra npr. 110mm, je torej tlak v manšeti 110mmHg višji od zunanjega zračnega
tlaka.
Ker je živo srebro strupeno, manometrov na živo srebro raje ne uporabljamo več,
na njih pa nas bo vedno spominjala enota mmHg.

82



Poglavje 7

Mehanske lastnosti trdnih snovi

V nasprotju s plini in tekočinami imajo trdna telesa svojo obliko, ki se spre‑
meni šele ob delovanju močnih zunanjih sil. Slika 7.1 prikazuje nekaj naj‑
pogostejših načinov delovanja zunanjih sil in posledičnih deformacij: nate‑
zno, tlačno in strižno deformacijo smo že srečali (slika 6.2), za razumevanje
zlomov kosti v medicini pa je pomembna tudi vzvojna (torzijska), ki je po‑
dobna strižni, le da je telo obremenjeno z navorom in ne s silo.

ℓ ℓℓ₀
α

ϑ

S

Slika 7.1: Shematični prikaz osnovnih tipov obremenitve in posledičnih defor‑
macij trdnih teles. A) V ravnovesju ima telo dolžino ℓ0 in površino preseka S. B)
Natezna obremenitev. C) Tlačna obremenitev. D) Strižna obremenitev. Pri njej je
mera za velikost deformacije kot nagiba α. E) Vzvojna oz. torzijska obremenitev.
Mera za velikost deformacije pri njej je kot zasuka ϑ.

Poglejmo si nekaj osnovnih pojmov, s katerimi opisujemo deformaci‑
jo trdnih snovi pod obremenitvijo. Prva pomembna lastnost je obrnljivost
deformacije: če se telo po prenehanju obremenitve vrne v začetno obliko,
gre za prožno oz. elastično deformacijo, v nasprotnem primeru pa za pla‑
stično deformacijo. Guma je primer zelo prožne snovi, ki se lahko vrne v
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prvotno obliko tudi po velikih deformacijah, gnetenje plastelina pa je lep
primer plastične deformacije.

Mehanske lastnosti nekega telesa pogosto prikažemo na diagramu, na
katerem je prikazana odvisnost obremenitve od deformacije (slika 7.2). Za
mnoge snovi velja, da je pri dovolj majhni obremenitvi velikost deformacije
kar sorazmerna obremenitvi. Sorazmernost med deformacijo in obreme‑
nitvijo imenujemo Hookov zakon, ki smo ga že srečali pri idealni vzmeti
(primer 3.4). Če se obremenitev poveča preko meje sorazmernosti, je za
nadaljnje povečevanje deformacije potrebna vedno manjša obremenitev,
deformacija pa je lahko še vedno v območju prožnosti in je reverzibilna.
Šele ko prekoračimo t. i. mejo prožnosti in preidemo v območje plastično‑
sti, se telo preoblikuje trajno in se po prenehanju obremenitve ne vrne več
v začetno obliko. Ko deformacija doseže mejo trdnosti, se snov zlomi oz.
pretrga.
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Slika 7.2: A) Shematični prikaz tipičnega obnašanja trdnih teles pod obremeni‑
tvijo. Z večanjem obremenitve se veča deformacija ‑ pri majhnih deformacijah je
zveza linearna, pri večjih pa za povečanje deformacije potrebujemo vedno manjšo
povečanje obremenitve. Če obremenitev ni prevelika, je deformacija v območju
prožnosti in telo se po prenehanju obremenitve vrne v začetno obliko. Pri večjih
obremenitvah pridemo v območje plastičnosti, pri dovolj veliki obremenitvi pa
dosežemo mejo trdnosti in se telo zlomi oz. pretrga. B) Zveza med deformacijo in
natezno obremenitvijo za femur, kito, hrustanec in las [8, 9]. Zveze za hrustanec
in kito so tudi pri majhnih deformacijah nelinearne, zato za njih Hookov zakon ne
velja. Za hrustanec je prikazana tudi zveza za tlačno obremenitev (→←), pri kateri
se deformira bistveno manj kot pri natezni (←→). Prikazane zveze so ilustrativne,
saj so med ljudmi obstajajo velike variacije, poleg tega pa se zelo spreminjajo tudi
s starostjo.
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»Trdoto« snovi1 v območju sorazmernosti pogosto opišemo s prožno‑
stnimi moduli oz. elastičnimi konstantami snovi. To so konstante, ki nastopa‑
jo v Hookovem zakonu in so za različne deformacije definirane različno.
Najpreprostejši Hookov zakon smo srečali pri vzmeti, kjer silo in defor‑
macijo povezuje konstanta vzmeti (F = kx). Hookov zakon za natezno in
tlačno obremenitev prožne snovi zapišemo podobno:

F

S
= E

∆ℓ

ℓ0
, (7.1)

kjer se konstanta E imenuje Youngov modul in ima enoto pascal, ℓ0 je dol‑
žina telesa brez obremenitve, ∆ℓ sprememba dolžine telesa pod obreme‑
nitvijo, S pa je prečni presek telesa. Hookov zakon je v tem primeru torej
zveza med nateznim tlakom in relativnim podaljšanjem telesa (vrednost
∆ℓ/ℓ0 predstavlja relativno spremembo dolžine) – če na snov delujemo s
tlakom, ki je 1 % vrednosti Youngovega modula, se bo podaljšala za 1 %
svoje dolžine (primer 7.1). Na grafu zveze med obremenitvijo in deforma‑
cijo (slika 7.2A) lahko vrednost Youngovega modula odčitamo kot naklon
krivulje v območju sorazmernosti. »Trša« kot je snov, večji ima Youngov
modul in bolj strma je krivulja.

Strižno deformacijo opišemo s kotom nagiba α (slika 7.1D), Hookov
zakon zanjo pa je sorazmernost med kotom nagiba in strižno napetostjo:

τ = Es α , (7.2)

kjer konstanto Es imenujemo strižni modul.
Vzvojno deformacijo opišemo s kotom zasuka θ (slika 7.1E), obremeni‑

tev pa je kar navor, s katerim zvijamo telo. Sorazmernostni koeficient v tem
primeru imenujemo direkcijska konstanta (D), Hookov zakon pa zapišemo
kot:

M = D θ (7.3)

Opozorimo naj, da po zgornjih definicijah Youngov in strižni modul
nista odvisna od oblike temveč le od vrste snovi. Direkcijska konstanta

1V pogovornem jeziku trdne snovi niso tekoče, trde pa niso mehke. Strokovna defini‑
cija »trdote« ni tako enostavna, a je tu ne bomo obravnavali.

85



Medicinska biofizika (oktober 2023)

in konstanta vzmeti sta po drugi strani odvisni tudi od oblike. Pri dani
sestavi kosti je npr. njena direkcijska konstanta odvisna od njene debeline
(kako?), Youngov modul pa ne.

Pri enostavnih snoveh so velikosti modulov med seboj pogosto pove‑
zane in imajo npr. snovi z velikim Youngovim modulom tudi velik strižni
modul. Preproste povezave med različnimi moduli pa ne držijo več pri
zapletenejših telesih, še posebej pri takšnih, ki so sestavljena iz različnih
strukturnih komponent in niso homogena in izotropna (tj. nimajo enake
sestave po vsej prostornini in ne enakih lastnosti v vseh smereh). Eno‑
staven primer takega telesa je kup listov papirja, ki jih postavimo na ravno
površino ‑ tak kup ima relativno velik Youngov modul za tlačno obremeni‑
tev z zgornje strani, njegov strižni modul pa je majhen, saj ga lahko poruši
že majhna vodoravna sila.

Mnoge biološke snovi niso enostavne, zato so njihove mehanske lastno‑
sti pogosto bolj zapletene od lastnosti npr. kosa jekla. Slika 7.2B prikazuje
zvezo med deformacijo in obremenitvijo za štiri biološke snovi. Hrusta‑
nec je npr. bistveno trši ob stiskanju kot ob raztezanju, natančna analiza
pa pokaže, da zveza med obremenitvijo in deformacijo ni linearna niti pri
majhnih deformacijah (takim snovem pravimo ne‑Hookove). Las na prvi
pogled zgleda močnejši od femurja, a spomnimo se, da so lasje zelo tan‑
ki in je natezni tlak zelo velik že pri zelo majhnih silah. Izkaže se tudi,
da imajo kosti zaradi svoje neizotropne sestave večji Youngov modul za
longitudinalno obremenitev kot za transverzalno obremenitev [9].

Poznavanje mehanskih lastnosti ni pomembno le za različne snovi in
tkiva, ampak tudi za celotne organe. Za votle organe (npr. za pljuča ali
žile) je tako zelo pomembna lastnost njihova podajnost oz. komplianca (C),
ki pove, za koliko se organ raztegne, če se spremeni tlačna razlika med
notranjostjo in zunanjostjo organa. Definirana je preko enačbe

∆V = C∆p (7.4)

Če ima organ veliko podajnost, se mu bo torej prostornina opazno spre‑
menila že ob majhni spremembi tlaka. Vene so npr. mnogo bolj raztegljive
od arterij in imajo torej tudi precej večjo podajnost. Iz definicije podajnosti
sledi (C = ∆V /∆p), da jo lahko razberemo kot naklon krivulje, ki opisuje
zvezo med prostornino in tlakom v organu. Ta odvisnost ponavadi ni li‑
nearna, zato tudi podajnost ni konstanta, ampak je odvisna od prostornine
organa. Če želimo primerjati podajnost pljuč različnih velikosti, se upora‑
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blja specifična podajnost, tj. podajnost glede na neko standardno prostor‑
nino pljuč, ponavadi glede na funkcionalno residualno kapaciteto pljuč,
Cp = C

VFRC
= 1

VFRC

∆V
∆p

. Po enoti je specifična podajnost analogna stisljivosti
(enačba 6.3).

Primer 7.1: obremenjevanje kosti in las

1. Ocenimo, za koliko se skrajša femur, ko stojimo na eni nogi! Youngov modul
kosti na longitudinalno tlačno obremenitev je približno 18 GPa, dolžina kosti je
približno 0,5 m, polmer njenega prečnega preseka je približno 10 mm, naša masa
pa je približno 70 kg.
Tlak, s katerim obremenjujemo femur je

p =
F

S
=

mg

πr2
=

700N
π 0,012 m2 ≈ 2,2MPa ,

kar je približno 0,01 % vrednosti Youngovega modula. S pomočjo enačbe 7.1 tako
ugotovimo, da se bo kost skrčila za približno 0,01 % svoje dolžine, kar je 0,05 mm
in je v primerjavi z dolžino hlač praktično zanemarljivo.
2. Za koliko pa se lahko femur raztegne preden se zlomi? Na sliki 7.2B je razvi‑
dno, da je meja trdnosti pri približno 1 % deformaciji. Femur, dolg 0,5 m, se pri
natezni obremenitvi pred zlomom torej podaljša za približno 5 mm, kar nikakor
ni zanemarljivo.
3. Kako težak predmet lahko obesimo na las preden se strga? Premer lasu je pri‑
bližno 100μm.
Na sliki 7.2B je razvidno, da je meja trdnosti lasu pri približno 200MPa. Sila, ki je
potrebna za tako velik natezni tlak je

F = pS = pπr2 = 200MPa · π · 502 10−12m2 = 1,6N

Na en las lahko torej obesimo predmet z maso približno 160 g.
4. Ocenimo, koliko las moramo splesti v kito, da bo na njej lahko varno visela 70
kg težka oseba?
Intuitivno sklepamo, da več las zdrži večjo težo. Če vsak las zdrži 0,16 kg, bosta
dva zdržala 0,32 kg in tako naprej. Potrditev za to intuitivno ugotovitev najdemo v
dejstvu, da je sila, ki je potrebna za deformacijo telesa sorazmerna njegovemu preč‑
nemu preseku (v enačbi 7.1, F = SE∆ℓ/ℓ0). Z dodajanjem las v kito sorazmerno
povečujemo njen presek, Youngov modul pa se pri tem seveda ne spremeni.
Glede na zgornje podatke, bi osebo s 70 kg torej zdržalo že 700N/1,6N ≈ 440 las!
Morda torej le ni nemogoče, da je baron Münchhausen sam sebe za lase potegnil
iz blata...
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Primer 7.2: elastografija

Tumorji so pogosto trši od zdravega tkiva, zato jih zdravniki že od nekdaj zazna‑
vajo s tipanjem (s t. i. palpacijo). V zadnjih letih poskušajo to znanje prenesti tudi v
sodobne objektivne diagnostične metode, s katerimi bi lahko neinvazivno izmerili
»trdoto« tkiv v telesu oz. njihov Youngov modul. Ena takih tehnik je elastografija.
Osnovna ideja elastografije je preprosta: telo slikamo s standardno slikovno me‑
todo, nato ga deformiramo, slikamo še enkrat ter sliki primerjamo. Trde strukture
v telesu bomo brez težav razbrali iz primerjave obeh slik, saj se bodo deformirale
manj od mehkih struktur. Princip ilustrira spodnja slika. Svetlo modra struktura
v tkivu je mnogo trša od temno modre in okoliškega tkiva, zato se ob deformaciji
telesa deformira bistveno manj.

Opisani princip je združljiv s katerokoli slikovno metodo, največ pa ga kombini‑
rajo z ultrazvočnim slikanjem ali magnetno resonanco. Deformacijo tkiva lahko
dosežemo na več načinov: tkivo lahko preprosto stisnemo od zunaj, lahko upo‑
rabimo ultrazvočni val, lahko pa izkoristimo kar fiziološke deformacije v telesu,
npr. utripanje srca. Če poznamo prožne module običajnega tkiva, lahko računal‑
nik na osnovi primerjave slik pred in po deformaciji izračuna prožne module vseh
struktur na sliki.
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Zgoraj je prikazana standardna ultrazvočna slika papilarnega karcinoma ščitnice,
spodaj pa še ista slika, na kateri pa so strukture obarvane glede na izmerjen Youn‑
gov modul. Elastografija lepo pokaže, da je karcinom bistveno trši od okoliškega
tkiva (povzeto po [10]).

89



Poglavje 8

Površinska napetost

Glavna značilnost kapljevin je, da se molekule v njih držijo skupaj, hkra‑
ti pa se lahko premikajo ena mimo druge. Kapljevine imajo zaradi tega
zanimivo lastnost imenovano površinska napetost, ki omogoča vrsto prese‑
netljivih pojavov, npr. tek vodnih drsalcev po vodni gladini ali pa spontan
dvig vode v tankih kapilarah.

Površinsko napetost bomo najbolje razumeli, če na vodno gladino po‑
gledamo s stališča energije. Molekule vode se med seboj privlačijo (če se ne
bi privlačile, bi se razletele po vsem prostoru!) in če hočemo vez med dve‑
ma molekulama pretrgati, moramo opraviti delo. Za vsako molekulo vode
je tako energijsko ugodno, da se poveže s čim več sosedami. Molekule na
površini vode na zunanji strani nimajo sosed, s katerimi bi lahko ustvarja‑
le vezi, zato je površina energijsko neugodna. Vsako povečanje površine
vode je povezano s trganjem vezi med molekulami, ki se iz notranjosti pre‑
selijo na površino, ter torej stane energijo, ki je kar sorazmerna povečanju
površine.

V poglavju o energiji (poglavje 4.2) smo videli, da sistemi težijo k čim
manjši energiji, zaradi česar tudi voda teži v stanje s čim manjšo površino.
Če ni zunanjih sil, se vodna kapljica zato oblikuje v kroglo, ki je oblika z naj‑
manjšo površino pri dani prostornini (slika 8.1). Tendenca po čim manjši
površini se nam s stališča sil kaže kot površinska napetost, ki si neprestano
želi krčiti površino.

Opis površinske napetosti dopolnimo še z njeno definicijo preko enač‑
be:
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Slika 8.1: Shematski prikaz izvora površinske napetosti. Površina vode je ener‑
gijsko neugodna, saj molekule vode na površini ne morejo tvoriti toliko vezi s
sosedami kot molekule v notranjosti. Voda si zato želi svojo površino čim bolj
zmanjšati. Če ni zunanjih sil, se kapljica vode spontano preoblikuje v kroglo, kar
je oblika z najmanjšo površino pri dani prostornini. Ta tendenca vode po zmanj‑
šanju površine se nam kaže kot površinska napetost σ, ki si neprestano želi krčiti
površino in je konstantna po vsej gladini in ni odvisna od oblike kapljice.

A = ∆Wσ = σ∆S (8.1)

kjer jeA delo, ki ga moramo vložiti v povečanje površine,Wσ je površinska
energija, površinska napetost pa je sorazmernosti koeficient σ in ima enoto
N/m. Izvor površinske energije so medmolekulske potencialne energije
(slika 4.3), zato tudi pri Wσ ponavadi merimo le njene spremembe in ne
absolutnih vrednosti. Površinska napetost pri čistih snoveh ni odvisna od
velikosti površine: gladina vode je vedno enako napeta, ne glede na svojo
velikost ali obliko.

V splošnem je površinska napetost lastnost stika med dvema snovema
in opisuje, kako »radi« sta dve snovi v stiku: manj kot se imata dve snovi
»radi«, šibkejše so medmolekulske vezi med njima, več energije moramo
vložiti v povečanje površine njunega stika in večja je površinska napetost
med njima (s povečevanjem površine njunega stika trgamo vezi v vsaki od
snovi, novih vezi na površini pa ne ustvarjamo). Površinska energija in po‑
vršinska napetost obstajata tudi na meji trdnih snovi, le da se te ne morejo
preoblikovati, zaradi česar površinsko napetost pri njih težje opazimo.

Snovi, ki z vodo ne morejo tvoriti vezi in s katerimi ima voda veliko
površinsko napetost, so hidrofobne (npr. olje), snovi, ki pa so rade v stiku
z vodo, pa so hidrofilne (npr. steklo). Obstajajo pa tudi molekule, ki imajo
dvojno naravo: na eni strani so hidrofilne, na drugi pa hidrofobne, oz. so
amfipatske (sinonim je tudi amfifilne). Takšne so mnoge pomembne biološke
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molekule, npr. detergenti in lipidi, ki imajo polarno glavo in nepolarne
repe, pa tudi nekateri proteini. Amfipatske molekule se v vodni raztopini
spontano razporedijo po površini vode in sicer tako, da so njihovi polarni
deli obrnjeni proti vodi (slika 8.2). Na tak način bo namreč celoten sistem
v energijsko najugodnejšem stanju: vse molekule vode lahko tvorijo vezi
ali med seboj ali pa s polarnimi deli amfipatskih molekul.

Prisotnost amfipatskih molekule lahko torej občutno zniža površinsko
napetost, zaradi česar jih imenujemo tudi surfaktanti (površinsko aktivne
molekule). Detergente npr. uporabljamo zato, da znižajo površinsko na‑
petost med vodo in oljem, zaradi česar lahko velike oljne kapljice lažje raz‑
bijemo na manjše ter jih odplaknemo z vodo. Različni surfaktanti (veči‑
noma lipidi) so tudi ključni za delovanje pljuč, saj je v pljučih ogromna
površina med vodno raztopino in zrakom in je zato tam dobro imeti čim
manjšo površinsko napetost.

hidrofoben del

hidrofilen del

Slika 8.2: Shematski prikaz razporeditve surfaktantov v vodi. Surfaktanti so am‑
fipatske molekule, sestavljene iz polarnega in nepolarnega dela (na sliki je primer
molekule detergenta). V vodi take molekule spontano poiščejo površino (npr. stik
z zrakom ali oljem) in na njej nepolarne repe obrnejo stran od vode. Surfaktan‑
ti tako občutno zmanjšajo površinsko napetost vode, saj s surfaktantom prekrita
površina ni več tako energijsko neugodna.

Omenimo naj še, da med napetostjo in tlakom obstaja lepa analogija:
obe količini sta skalarja, le da tlak obstaja v tridimenzionalnem prostoru,
napetost pa v dvodimenzionalnih površinah. Če je tlak povezan s silo na
enoto površine, je napetost enaka sili na enoto dolžine. Na robu kapljevi‑
ne se površinska napetost čuti kot sila, s katero kapljevina vleče rob. Sila
zaradi površinske napetosti je vedno vzporedna z gladino, njena velikost
pa je sorazmerna dolžini roba in površinski napetosti

Fσ = σℓ, (8.2)

kjer smo z ℓ zapisali dolžino roba površine.
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8.1 Laplace‑ov zakon za napetost ukrivljenih po‑
vršin

Površinska napetost vodo neprestano stiska, zato je tlak v vodni kaplji‑
ci malo večji od zunanjega. To tlačno razliko lahko izračunamo, če si v
mislih kapljico prerežemo na polovico in pogledamo ravnovesje sil (slika
8.3). V levo smer vleče sila zaradi površinske napetosti (enačba 8.2), ki
deluje vzdolž vsega roba kapljice tangentno na površino in je sorazmerna
površinski napetosti in dolžini roba kapljice, Fσ = σ2πr. Tej sili nasprotuje
tlačna razlika med notranjostjo in zunanjostjo kapljice, ki deluje pravoko‑
tno na njeno gladino. Rezultanta sil tlaka na desno površino polsfere je
usmerjena v desno (komponente sil, ki so vzporedne prerezu kapljice, se
zaradi simetrije med seboj izničijo) in je sorazmerna tlačni razliki in po‑
vršini preseka, F = ∆pπr2. Ko obe sili izenačimo in enačbo preuredimo,
dobimo znameniti Laplaceov zakon, ki povezuje tlačno razliko in napetost
ukrivljene površine:

∆p =
2σ

r
(8.3)

r

Slika 8.3: Shematični prikaz ravnovesja sil v kapljici vode. Površinska napetost
kapljico stiska, zato je v njej večji tlak kot zunaj. Tlačno razliko, napetost površine
in ukrivljenost površine povezuje Laplaceov zakon (enačba 8.3), ki sledi iz ravno‑
vesja sil zaradi površinske napetosti (delujejo vzdolž roba kapljice in so na sliki
označene z rdečo) in sil zaradi tlačne razlike (te delujejo pravokotno na površino
in so na sliki označene z modro).

Po pričakovanju je povečanje tlaka v kapljici sorazmerno površinski na‑
petosti, povsem neituitivno pa je tlačna razlika obratno sorazmerna radiju
in je torej tlak v manjših kapljicah večji kot v velikih! Laplacov zakon v
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malo drugačni obliki velja tudi za žile, kjer ima lahko zelo hude posledice
(primer 8.1).

Podobno situacijo kot pri kapljici vode srečamo tudi pri milnih mehurč‑
kih (le da je pri njih površina med vodo in zrakom dvojna – ena na zunanji
in ena na notranji strani – in je zato tudi tlačna razlika še enkrat večja kot
pri kapljici) ter pri mehurčki zraka v vodi in v alveolih v pljučih (pri obo‑
jih je zrak obdan z vodno raztopino, a stik med zrakom in vodo želi biti
čim manjši, enako kot pri vodni kapljici v zraku). Alveoli so zelo majhni
(njihov premer je le nekaj 100μm), zato bi bila v njih tlačna razlika brez
surfaktantov zelo velika in bi lahko povzročila kolaps pljuč. S tem ima‑
jo lahko velike težave nedonošenčki, saj se surfaktanti v njihovih pljučih
začnejo tvoriti šele v drugi polovici nosečnosti. Zdravniki jim pomagajo s
terapijo s surfaktanti, ki jih v pljuča takoj po porodu vpihajo od zunaj.

Primer 8.1: Laplaceov zakon za žile in anevrizma

Laplaceov zakon je splošen zakon, ki povezuje tlačno razliko med eno in drugo
stranjo površine z napetostjo in ukrivljenostjo površine. Velja npr. tudi za žile, pri
katerih krvni tlak v žili napenja žilne stene, le da sta v primerjavi z vodno kapljico
pri žilah vzrok in posledica zamenjana: pri kapljici zaradi površinske napetosti
naraste tlak v notranjosti, pri žili pa krvni tlak v notranjosti povzroči napetost v
žilni steni.

ℓ

A B C

Poglejmo si, kako Laplaceov zakon zapišemo za žilo. V mislih si žilo po dolgem
razrežimo in zapišimo ravnovesje sil (v pomoč nam je lahko slika A): sila, zaradi
napetosti je sorazmerna dolžini roba, Fσ = 2ℓσ (ℓ je dolžina žile), uravnovesi pa jo
sila zaradi tlačne razlike, ki je sorazmerna površini preseka žile, F = ∆pℓ2r. Ko
sili izenačimo in pokrajšamo ℓ, dobimo Laplaceov zakon za valjasto geometrijo:

σ = ∆pr (8.4)

Tu je σ napetost žilne stene in v nasprotju s površinsko napetostjo ni konstanta.
Napetost smo zato zapisali na levo stran enačbe, tlačno razliko, ki je vzrok napeto‑
sti, pa smo dali na desno (enačba je sicer povsem analogna Laplaceovem zakonu,
enačbi 8.3, le faktorja 2 ni, saj je ukrivljenost valjaste površine polovica ukrivljeno‑
sti sferične površine kapljice). Po pričakovanju ima večji tlak v žili za posledico
večjo napetost žilne stene. Laplaceov zakon tudi pove, da je pri dani tlačni razliki
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napetost tem večja, čim večji je radij žile. Kapilare so v primerjavi z arterijami zelo
majhne, zato so lahko njihove žilne stene bistveno tanjše.
Za žile ima Laplaceov zakon usodne posledice: če žilna stena zaradi prevelike na‑
petosti začne popuščati in se žila izboči in se radij žile poveča. Napetost v žilni
steni se zaradi tega ne sprosti, temveč se le še poveča! Iz zgornje enačbe namreč
vidimo, da je pri danem krvnem tlaku napetost žilne stene sorazmerna radiju žile!
Popuščanje žilnih sten je torej zelo nestabilni pojav in vodi v neustavljivo napiho‑
vanje žile, kar imenujemo anevrizma. Če se anevrizme ne zdravi, lahko poči in v
skrajnem primeru povzroči tudi smrt. Na slikah B in C sta shematsko prikazana
dva primera anevrizme: vretenasta (fuziformna) in vrečasta (sakciformna). V obeh
primerih se zaradi Laplaceovega zakona z večanjem radija povečuje tudi napetost
v žilni steni, ki zato postaja vse bolj nestabilna.

8.2 Močenje površin in kapilarni efekt

Če pride kapljevina v stik s trdno snovjo, njenega obnašanja ne definira le
njena površinska napetost z zrakom, temveč tudi površinska napetost med
trdno snovjo in zrakom ter trdno snovjo in kapljevino. Kapljevina se trdne
snovi dotika pod t. i. kontaktnim kotom oz. kotom močenja, ki je odvisen od
vseh treh površinskih napetosti, pa tudi od hrapavosti površine (slika 8.4).
Če je npr. trdna snov raje v stiku s kapljevino kot z zrakom, bo energijsko
ugodno, da se kapljevina po površini razpotegne in bo zato kontaktni kot
manjši od 90°. V takem primeru pravimo, da kapljevina moči podlago.

ϑ ϑ

A B C

Slika 8.4: Shematični prikaz treh stopenj močenja vode na podlagi. A) Na hi‑
drofilnih površinah je kontaktni kot (θ) manjši od 90° in pravimo, da voda moči
podlago (tako je npr. na steklu). V tem primeru je energijsko ugodnejši stik med
podlago in vodo kot med podlago in zrakom. B) Na hidrofobnih površinah (npr.
na teflonu) je kontaktni kot večji od 90° in pravimo, da voda podlage ne moči. C)
Če je kontaktni kot blizu 180°, pravimo, da je podlaga superhidrofobna. Takšni
so npr. listi nekaterih rastlin. Površino je težko narediti superhidrofobno zgolj s
kemijsko obdelavo, superhidrofobne podlage so ponavadi hrapave in imajo mi‑
kroskopske strukture, v katerih se lahko ujame zrak.
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Pri hidrofilnih površinah je kontaktni kot za vodo manjši od 90°, pri
hidrofobnih pa večji. Steklo je npr. hidrofilno in ima kontaktni kot, ki je
manjši od 10°, teflon pa je hidrofoben in ima kontaktni kot nekaj večji od
110°. Če je kot 0° lahko pride celo do popolnega močenja, po drugi strani
pa so nekatere snovi superhidrofobne, kar pomeni, da je kontaktni kot za
vodo blizu 180°. Superhidrofobni so listi mnogih rastlin, npr. nepoško‑
dovani cvetni listi vrtnice, v zadnjih letih pa se superhidrofobnost vse bolj
uporablja tudi pri obdelavi površin predmetov. Za medicino je ta pojav
zanimiv, ker se na superhidrofobnih površinah težje vzpostavi biofilm (tj.
tanka plast vode, bakterij in njihovih izločkov), zaradi česar so take povr‑
šine manj izpostavljene možnosti bakterijske kontaminacije.

Z močenjem je povezan zanimiv pojav, imenovan kapilarni efekt. Naj‑
bolje ga bomo spoznali, če v vodo navpično potopimo stekleno kapilaro
(slika 8.5). Ker voda dobro moči steklo, je energijsko ugodno, da se zmanj‑
ša površina med steklom in zrakom ter poveča površina med steklom in
vodo. Voda se zato v stekleni kapilari začne dvigovati in se dviguje, dokler
se sila površinske napetosti ne uravnovesi s silo teže vodnega stolpca v ka‑
pilari. V ravnovesju se v kapilari vidi ukrivljen meniskus, ki je posledica
kontaktnega kota.

h

Fσ

Fg

ϑ

Slika 8.5: Shematični prikaz kapilarnega dviga v tanki stekleni kapilari. Ker voda
moči steklo, je energijsko ugodno, da se površina med steklom in vodo poveča,
površina med steklom in zrakom pa zmanjša. Navpična steklena kapilara zato
nase »posrka« vodo. Ravnovesno višino (h) lahko izračunamo, če izenačimo silo
teže (Fg), ki vodni stolpec v kapilari vleče navzdol, in silo zaradi površinske nape‑
tosti (Fσ), ki vodo vleče gor (enačba 8.7). Tanjša, kot je kapilara, večje je razmerje
med površino in prostornino vode in večji je kapilarni efekt.
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Višino kapilarnega dviga lahko izračunamo iz ravnovesja med silo teže
vode v kapilari in silo površinske napetosti. Sila teže je sorazmerna masi
vodnega stolpca v kapilari oz. njegovi prostornini:

Fg = mg = ρV g = ρπr2hg , (8.5)

kjer je ρ gostota vode, prostornina vodnega stolpca v kapilari pa je V =
πr2h, kjer je h višina kapilarnega dviga, r pa radij kapilare.

Sila, s katero vleče steklo vodo navzgor je po velikosti enaka navpični
komponenti sile površinske napetosti na stiku med vodo in steklom. Iz
slike 8.5 razberemo, da je navpična komponenta sile površinske napetosti
enaka

Fσ∥ = Fσ cos θ = σ2πr cos θ . (8.6)

kjer je 2πr dolžina stika med vodo in steklom vzdolž katere deluje sila po‑
vršinske napetosti. Ko sili izenačimo, dobimo za višino kapilarnega dviga
naslednji izraz:

h =
2σ cos θ
rρg

(8.7)

Vidimo, da je kapilarni dvig tem višji, čim večja je površinska napetosti,
čim manjši je kontaktni kot, čim redkejša je tekočina in čim tanjša je ka‑
pilara. Slednje lahko razumemo tudi s stališča geometrije: razmerje med
površino in prostornino je obratno sorazmerno z radijem cevke, zato so v
tanjših cevkah površinski efekti mnogo bolj izraziti. Zaradi kapilarnega
efekta lahko npr. s papirjem brez težav popivnamo vodo. Voda celulozo
namreč dobro moči, hkrati pa je v celulozi tudi zelo veliko razmerje med
površino vlaken in prosto prostornino med njimi, zato papir vase posrka
vodo in z njo prekrije svoja celulozna vlakna brez večjega nasprotovanja
sile teže.

Iz zgornje enačbe vidimo, da je v primeru, ko kapljevina površine ne
moči, kapilarni dvig negativen (v tem primeru je θ > 90° in je zato cos θ ne‑
gativen). Taka situacija je npr. pri živemu srebru. Meniskus živega srebra
v stekleni cevki je zato izbočen proti zraku. Če stekleno kapilaro pomoči‑
mo v živo srebro, se meniskus v njej spusti pod nivo zunanje gladine.
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Poglavje 9

Gibanje tekočin

Vsak, ki je kdaj občudoval igro vodnega toka v bližnjem potoku, se je srečal
z neverjetno raznolikostjo in zapletenostjo gibanja tekočin. Ko potok teče
po kamnih in se vrtinči, se molekulam vode v potoku neprestano spremi‑
njata hitrost in smer gibanja, zato se mora nadebudni fizik hitro sprijazniti
z dejstvom, da takega toka v splošnem ne more opisati z enostavno enačbo.
V principu bi sicer lahko za opis obnašanja vsakega delčka tekočine upo‑
rabili 2. Newtonov zakon (zapisan za tekočine se imenuje Navier‑Stokesova
enačba), a je delčkov enostavno preveč, da bi mogli njihovo gibanje v celoti
popisati s preprosto formulo. V praksi moramo zato kompleksne toko‑
ve (npr. tok krvi v aorti) analizirati s pomočjo računalnika in numeričnih
simulacij, le v posebnih preprostih situacijah lahko tok tekočine zadovo‑
ljivo opišemo tudi z relativno enostavnimi zakonitostmi in enačbami. V
tem poglavju bomo spoznali nekaj teh zakonitosti, ki nam bodo pomagale
razumeti osnovne biološke procese povezane z gibanjem tekočin.

9.1 Opisovanje tekočin v gibanju, viskoznost
O gibanju tekočin govorimo pri vseh pojavih, pri katerih se različni deli te‑
kočine gibljejo eden glede na drugega. Do gibanja tekočine pride npr. med
tokom tekočine po cevi, pa tudi pri premikanju telesa po mirujoči tekočini,
saj mora telo pri tem tekočino odrivati. V obeh primerih se različni deli
tekočine gibljejo v različnih smereh in z različnimi hitrostmi, zaradi česar
je lahko celotna slika gibanja izjemno zapletena.

Tok tekočine si najlažje predstavljamo, če narišemo tokovnice, tj. črte,
ki sledijo poti izbrane točke v toku tekočine. Slika 9.1 prikazuje tokovnice
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toka tekočine pri obtakanju okroglega telesa in pri toku v cevi. Če je tok mi‑
ren in brez vrtincev, govorimo o laminarnem toku, če pa se tekočina vrtinči,
gre za turbulentni tok. Pri majhnih hitrostih je tok ponavadi laminaren, pri
velikih pa postane turbulenten. Turbulence so izvor šumenja toka, zaradi
česar jih lahko, ko nastajajo v dihalnih poteh ali v krvnem obtoku, slišimo s
stetoskopom. Tokovnic v eksperimentih ne moremo videti, razen če teko‑
čini ne dodamo majhnih obarvanih delčkov in sledimo njihovi poti vzdolž
toka.

Slika 9.1: Štirje primeri toka tekočine. V zgornji vrstici so prikazane tokovnice,
ko tekočina obliva okroglo telo, v spodnji vrstici pa so prikazane tokovnice toka
tekočine po cevi. V levem stolpcu je tok laminaren, v desnem pa turbulenten.
Rdeči črtkani črti označujeta profil hitrosti pri pretakanju po cevi: v laminarnem
režimu je profil paraboličen, v turbulentnem pa se hitrostni profil malo splošči.

Ena najpomembnejših lastnosti realnih tekočin je viskoznost, ki pove,
kako močno je trenje, do katerega v tekočini pride med njenim gibanjem.
To notranje trenje v tekočini si lahko dobro predstavljamo, če se spomnimo,
da se lahko sosednje molekule v tekočini gibljejo z različnimi hitrostmi in
se zato »trejo« med seboj. Notranje trenje ima za gibanje tekočin podobno
posledico, kot trenje pri gibanju trdnih teles: zaradi trenja je treba gibanje
neprestano poganjati, saj se v nasprotnem primeru ustavi – če npr. srce
neha biti, se kri v žilah ustavi. Med gibanjem po tekočini čutimo notranje
trenje kot upor, ki nam ga pri tem nudi tekočina. V primerih, ko lahko
trenje v tekočini zanemarimo, govorimo o idealnih tekočinah.

Iz vsakdanjega življenja imamo z uporom zaradi viskoznosti kar nekaj
izkušenj. Vemo npr., da lahko z žlico po zraku mahamo brez težav, po vo‑
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di je že malo težje, upor v medu pa je zelo velik. Viskoznost zraka je torej
majhna, viskoznost medu pa velika. Opozoriti pa moramo, da vsakdanji
jezik pogosto meša pojma viskoznost in gostota, čeprav gre za dve raz‑
lični lastnosti, ki med seboj nista povezani. Gostota pove, kolikšno maso
ima določena prostornina tekočine, viskoznost pa kako močno se tekočina
zaradi notranjega trenja upira gibanju. Med gostoto in viskoznostjo tudi
ni neposredne povezave: olje ima npr. manjšo gostoto kot voda in večjo
viskoznost, med pa je gostejši in tudi bolj viskozen. Tudi v medicini se
pojma včasih uporablja ohlapno: z izrazom »redka kri« včasih opisujemo
kri z majhno viskoznostjo, zdravila za »redčenje krvi« pa pravzaprav le
zmanjšujejo strjevanje krvi in na njeno gostoto ali viskoznost ne vplivajo
bistveno.

Stroga fizikalna definicija viskoznosti ni povsem enostavna in jo na‑
vajamo v MaFijskem primeru 9.1. Za zdaj le navedimo, da za označeva‑
nje viskoznosti uporabljamo grško čroko η in da je enota za viskoznost
Pa · s = N · s/m2= kg/(m · s). Za vrednosti viskoznosti iz vsakdanjega ži‑
vljenja nimamo nobenega občutka, zato jih nekaj prikazujemo v tabeli 9.1.
V nadaljevanju bomo opisali nekaj enostavnih posledic viskoznosti, ki so
pomembne za razumevanje bioloških pojavov.

snov jedilno olje kri voda zrak

η [mPa · s] 80 3 1 0,02

Tabela 9.1: Viskoznost nekaterih snovi pri sobni temperaturi. Vrednost za kri je
približna in velja za zdravo odraslo osebo pri majhnem pretoku krvi. V praksi je
viskoznost krvi odvisna od mnogih dejavnikov, npr. od hematokrita in od strižne
hitrosti (povzeto po [9]).

MaFijski primer 9.1: definicija viskoznosti

Stroga fizikalna definicija viskoznosti je povezana s strižno silo, ki jo zaradi trenja
čuti del tekočine, ko se ob njem gibljejo drugi deli (glej spodnjo sliko). Izkaže se,
da je ta sila sorazmerna viskoznosti tekočine in pa razliki v hitrosti medsebojnega
gibanja sosednjih plasti tekočine (če se dva sosedna dela tekočine gibljeta z enako
hitrostjo, med njima seveda trenja sploh ni). Sila trenja je tudi sorazmerna velikosti
površine (S), preko katere deluje, zato namesto o strižni sili govorimo o strižni
napetosti, ki smo jo vpeljali na začetku opisovanja mehanskih lastnosti snovi, τ =
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F/S (slika 6.2). Vse povedano združimo v zapis z enačbo:

S

dz v+dv

v

τ = η
dv
dz

(9.1)

V zgornji definiciji je τ strižna napetost v določeni točki v toku tekočine, η je visko‑
znost, izraz dv/dz pa opisuje, kako hitro se v tisti točki hitrost tekočine spreminja
pravokotno na tokovnico (to količino imenujemo tudi strižna hitrost).

9.2 Gibanje v tekočini
Med gibanjem v tekočini čutimo silo upora, ki je posledica tega, da moramo
med gibanjem tekočino neprestano odrivati. V splošnem je izračun sile
upora zahteven in je odvisen od vrste podrobnosti, zato bomo tu navedli
le dva glavna splošna rezultata.

Pri majhni hitrosti oz. v režimu laminarnega toka je sila upora odvisna
od viskoznosti tekočine in jo za okroglo telo dobro opiše t. i. Stokesov zakon
upora:

F = 6πrηv , (9.2)

kjer je r radij telesa, η je viskoznost tekočine, v pa relativna hitrost gibanja
telesa glede na tekočino. Večje kot je telo, več je trenja in odrivanja tekočine
in večja je sila upora. Če telo ni okroglo, zgornja enačba še vedno približno
velja, le konstante so drugačne. V zakonu hitrost nastopa s prvo potenco,
zato ta zakon upora imenujemo tudi linearni zakon upora. Izvor sile upora v
tekočinah je v osnovi podoben kot je izvor sile trenja med trdnimi telesi, le
da pri slednjih sila trenja ni toliko odvisna od hitrosti gibanja, pri tekočinah
pa je ta odvisnost zelo pomembna.

Pri veliki hitrosti se za telesom začenjajo pojavljati turbulence in takrat
se sila upora spremeni. Vpliv trenja namreč postane zanemarljiv v primer‑
javi s silo, ki jo telo čuti, ko vanj udarja tekočina s svojo maso. Izkaže se,
da v takem režimu silo upora zadovoljivo opiše kvadratni zakon upora:
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F =
1

2
cSρv2 , (9.3)

kjer je S površina sprednjega preseka telesa, ρ je gostota tekočine, c pa je
t. i. koeficient upora, ki opisuje, kako aerodinamično obliko ima telo. Vre‑
dnost c za kocko je približno 1, za sfero približno 0,5, za kapljičasto obliko,
ki je ena najbolj aerodinamičnih, pa je koeficient upora enak približno 0,04.
Kvadratni zakon upora velja npr. med vožnjo po avtocesti, zato tam pora‑
ba goriva pri višjih hitrostih zelo hitro narašča.

Linearni zakon upora velja torej v laminarnem režimu toka, kvadratni
pa v turbulentnem. V katerem od obeh režimov je neko gibanje, lahko oce‑
nimo kar s primerjavo obeh sil upora, kot ju napovedujeta zgornji enačbi.
Če velikost kvadratne sile delimo z velikostjo linearne (in zraven upošte‑
vamo, da je površina prečnega preseka telesa sorazmerna kvadratu prečne
dimenzije, S ∝ r2, konstante pa zanemarimo) dobimo t. i. Reynoldsovo šte‑
vilo

Re =
ρvd

η
, (9.4)

kjer je ρ gostota tekočine, η njena viskoznost, v relativna hitrost tekočine
glede na telo, d pa je prečna dimenzija telesa (za kroglico je d = 2r). Re‑
ynoldsovo število nima enote, za oceno režima toka tekočine pa služi kar
njegova velikost: večje kot jeRe bolj turbulenten je tok. Poskusi so pokaza‑
li, da je pri gibanju okroglega telesa v tekočini tok ponavadi laminaren pod
približnoRe < 0,5, turbulenten pa je nad približnoRe > 1000. Pri vmesnih
vrednostih, ko turbulence šele začnejo nastajati, je sila upora nekje med li‑
nearno in kvadratno. V praksi prehod v turbulentni režim ni odvisen le od
Re, ampak še od okolice ter oblike telesa in od hrapavosti njegove površi‑
ne. Zgornja enačba je uporabna tudi za telesa, ki nimajo okrogle oblike, pri
čemer lahko za vrednost d vstavimo kar povprečno prečno dimenzijo tele‑
sa. Primer 9.1 prikazuje uporabo linearnega zakona za opis sedimentacije
eritrocitov v krvni plazmi.
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Primer 9.1: sedimentacija

Za začetek si poglejmo, kaj se dogaja s telesi, ko tonejo v tekočini, kasneje pa bo‑
mo dobljen rezultat uporabili za razumevanje diagnostičnega testa sedimentacije
eritrocitov.
Na delce v raztopini delujeta sila teže (Fg) in sila vzgona (Fv). Če je gostota delcev
večja od gostote raztopine, rezultanta teh sil kaže navzdol in vleče delce proti dnu.
Ko delci med tonjenjem pridobivajo hitrost, na njih deluje vedno večja sila upora
(Fu), ki kaže navpično navzgor. Zato bo slej ko prej rezultanta vseh sil postala
nič in od takrat naprej bodo delci tonili z enakomerno hitrostjo, s t. i. hitrostjo
sedimentacije. Oceno te hitrosti dobimo iz pogoja, da je vsota vseh treh sil enaka
0. Za primer okroglih delcev, ki tonejo v laminarnem režimu, lahko torej zapišemo:

6πrvη + ρraztopina
4

3
πr3g = ρkroglica

4

3
πr3g (9.5)

Če razliko gostot kroglice in raztopine označimo z ∆ρ = ρkroglica − ρraztopina in
zgornjo enačbo preuredimo, ugotovimo, da je hitrost sedimentacije sorazmerna
radiju kroglice na kvadrat:

v =
2∆ρgr2

9η
(9.6)

Iz enačbe sledi pomemben zaključek: pri dani gostoti večja telesa tonejo hitreje kot
manjša (enačba velja tudi za neokrogla telesa, le da so konstante v enačbi drugač‑
ne).
V različnih bolezenskih stanjih (predvsem pri vnetju) se eritrociti v krvi lepijo v
večje skupke, kar izkoristimo pri krvnem testu imenovanem sedimentacijska hitrost
eritrocitov (angl. ESR ali erythrocyte sedimentation rate). Skupki eritrocitov ima‑
jo namreč enako gostoto in veliko večji efektivni radij kot posamezne celice, zato
tonejo mnogo hitreje. Pri tem testu damo kri v posebno pipeto, jo postavimo nav‑
pično ter izmerimo, za koliko se eritrociti v krvni plazmi posedejo v eni uri (to
razberemo brez težav, saj se rdeči eritrociti pri tem vidno ločijo od rumenkaste
krvne plazme). Izmerjena razdalja v mm je ravno sedimentacijska hitrost v mm/h
(ta enota je standardizirana za test sedimentacije, zato se jo pri podajanju rezulta‑
tov testa včasih kar izpusti). V zdravi krvi je sedimentacijska hitrost okoli 10mm/h
(normalna vrednost je odvisna od starosti in spola) pri določenih boleznih pa lahko
doseže celo 100mm/h in več.

t	= 0 h

vs

t = 1 h

s
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Sedimentacijske lastnosti so pomembne tudi pri ločevanju makromolekul v razto‑
pinah, le da damo v tem primeru raztopino v ultracentrifugo ter tako težni pospe‑
šek g v zgornji enačbi nadomestimo z radialnim pospeškom ar = rω2, ki je lahko
bistveno večji in je zaradi tega ločevanje hitrejše. Na konceptualno podobni osnovi
delujejo tudi mnoge druge metode ločevanja makromolekul, saj je sila upora (in s
tem hitrost potovanja) v vseh snoveh tako ali drugače odvisna lastnosti molekul.
Tako deluje npr. elektroforeza v gelu, pri kateri makromolekul ne poganja sila
teže, ampak električna sila, ali pa različne vrste kromatografije.

9.3 Tok v ceveh in žilah
Pri toku tekočine v ceveh oz. žilah nas ponavadi najbolj zanima, koliko
tekočine se pretoči v določenem času, tj. prostorninski tok, ki je definiran
kot:

ΦV =
V

t
. (9.7)

Pri odraslem človeku srce npr. prečrpa približno pet litrov krvi na minuto
in velja ΦV = 5 l/min (prostornino krvi, ki jo srce prečrpa v eni minuti,
zdravniki imenujejo tudi minutni volumen srca).

Intuitivno uganemo, da je prostorninski tok odvisen od hitrosti preta‑
kanja tekočine – hitreje, kot bo tekla tekočina, večji bo pretok. Če bo teko‑
čina mirovala, bo tudi pretok enak nič. S pomočjo slike 9.2A lahko zvezo
med njima tudi izračunamo: tekočina, ki ima hitrost v, se v času t prema‑
kne za razdaljo ℓ = vt. Pri tem se pretoči prostornina V = Svt, kjer je S
prečni presek cevi. V praksi hitrost tekočine ni nujno enaka po celotnem
preseku, a zgornje zveze vseeno veljajo za povprečno hitrost v̄. Če upošte‑
vamo še enačbo 9.7, lahko torej zapišemo pomembno zvezo

ΦV = v̄S . (9.8)

Iz zveze med pretokom in hitrostjo sledi pomemben zaključek: pri pre‑
takanju nestisljivih tekočin, kot sta npr. voda ali kri, je pretok enak vzdolž
celotne dolžine cevi, ne glede na njeno obliko, saj mora vsa tekočina, ki
v cev na enem koncu vstopa iz nje na drugem koncu tudi izstopiti (slika
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S1

v1

ℓ1

ℓ2

v2
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A

B

Slika 9.2: A) Prostorninski tok tekočine v cevi je sorazmeren hitrosti in preseku
cevi. Pri nestisljivih tekočinah mora biti prostorninski tok vzdolž cevi povsod
enak, zato se ob zoženju cevi hitrost tekočine poveča. Na sliki sta osenčeni enaki
prostornini, ki se v istem času pretočita skozi širok in ozek del cevi, V = S1ℓ1 =
S1v1t = S2ℓ2 = S2v2t. S slike tudi vidimo, da je pri laminarnem toku hitrost
sorazmerna gostoti tokovnic. B) Če se žila zoži zaradi stenoze, se tam poveča
hitrost krvi, zaradi česar lahko nastanejo turbulence.

9.2A). Zato lahko za tok nestisljivih tekočin zapišemo

v̄1S1 = v̄2S2 (9.9)

in je torej hitrost tekočine tem večja, čim manjši je presek cevi. Če v žili
nastane zožanje (stenoza), se bo tam hitrost povečala, kar lahko privede do
nastanka turbulenc (slika 9.2B).

V valjasti cevi je v laminarnem režimu razporeditev tokovnic osno‑si‑
metrična, kar omogoča natančen izračun pretoka (ki pa po težavnosti pre‑
sega naše znanje). Iz računa izhajata dva zanimiva rezultata. Prvi je, da je
hitrost toka največja v sredini cevi, proti stenam cevi pa parabolično pada
(slika 9.1). Kvalitativno je ta rezultat mogoče razumeti iz definicije za vi‑
skoznost: tekočina se ne more gibati bistveno hitreje, kot tekočina v njeni
bližini, saj bi to povzročilo ogromno silo trenja. Stena cevi miruje, zato se
mora tekočina tik ob steni gibati počasi. Bolj kot se od stene bližamo sredi‑
ni cevi, hitreje se lahko tekočina giblje, najhitreje pa se seveda lahko giblje
v sredini. Račun tudi pokaže, da v paraboličnem profilu toka velja, da je
povprečna hitrost v cevi enaka polovici najvišje hitrosti:

v̄ =
1

2
vmax (9.10)
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Drugi pomembni rezultat za laminarni režim je, da tudi pri toku po cevi
velja linearni zakon, ki pa v tem primeru povezuje prostorninski pretok in
razliko tlakov, ki pretok poganja:

ΦV =
∆p

Rη

, (9.11)

kjer konstantoRη imenujemo viskozni upor. Zgornja enačba pove, da je tok
sorazmeren razliki tlakov, pri dani tlačni razliki pa je tok tem manjši, čim
večji je viskozni upor. Daljši račun, ki presega naše okvire, pokaže, da je
za valjaste cevi vrednost viskoznega upora enaka

Rη =
8ηℓ

πr4
, (9.12)

kjer je η viskoznost tekočine, ℓ je dolžina cevi, r pa njen radij. Izraz za
viskozni upor je deloma pričakovan: v daljših ceveh in pri večji viskozno‑
sti tekočine je več trenja, zato je tudi upor večji, v širših ceveh pa je upor
manjši. Presenetljiva je zelo močna odvisnost upornosti od radija cevi, saj
je upornost odvisna kar od četrte potence radija. Naše telo to močno od‑
visnost spretno uporablja pri uravnavanju krvnega pretoka z aktivno re‑
gulacijo polmera nekaterih žil, saj ima že majhna sprememba radija žile
velik vpliv na pretok krvi. Zgornji enačbi skupaj imenujemo tudi Hagen–
Poiseuilleva enačba.

Opozoriti je vredno, da ∆p v enačbi 9.11 predstavlja razliko tlakov med
začetkom in koncem cevi, o absolutni vrednosti tlaka pa Hagen–Poiseuilleva
enačba ne govori. Iz nje vseeno vidimo, da od začetka do konca cevi tlak
pada linearno (pri danem pretoku je padec tlaka sorazmeren dolžini vzdolž
cevi). Čim večja je viskoznost in tem manjši je radij cevi, tem hitreje bo pa‑
dal tlak vzdolž cevi.

Enačba 9.11 je analogna Ohmovem zakonu iz elektrike (I = U/R), saj
v njej na enak način nastopajo tok, upor ter količina, ki tok poganja (pri
elektriki je to električna napetost, pri tekočinah pa tlačna razlika). Za tok
tekočine velja tudi t. i. Kirchofov prvi zakon (zaradi ohranitve prostorni‑
ne je skupni tok, ki priteče v razvejišče žil, enak vsoti tokov, ki odtekajo iz
razvejišča), zato lahko analogijo uporabimo za računanje upornosti zaple‑
tenih žilnih sistemov: skupni upor dveh zaporednih različno velikih žil je
kar vsota uporov vsake od žil, skupni upor vzporednih žil pa izračunamo

106



Medicinska biofizika (oktober 2023)

preko vsote obratnih vrednosti uporov (slika 9.3).

Slika 9.3: Viskozni upor sistema žil lahko izračunamo na enak način kot skupni
upor pri vezjih električnih uporov. A) Skupni viskozni upor dveh vzporednih žil
izračunamo iz vsote obratnih vrednosti uporov posameznih žil 1/R = 1/R1 +
1/R2. B) Skupni viskozni zaporednih žil izračunamo kot vsoto vrednosti uporov
posameznih žil R = R1 +R2.

Že v uvodu smo omenili, da laminarni režim velja le pri majhnih hitro‑
stih toka, pri večjih hitrostih pa tok slej ko prej postane turbulenten. Tudi
pri pretakanju tekočin si lahko za oceno režima toka pomagamo z izraču‑
nom Reynoldsovega števila (enačba 9.4), pri čemer za d vstavimo povpreč‑
ni prečni premer cevi (za valjaste cevi je d = 2r). Za pretok po ceveh je meja
med režimoma približno pri Re ∼ 2300: pri manjših vrednostih Re je tok
še lahko laminaren, pri večjih pa postaja vse bolj turbulenten in linearni
(Hagen‑Poisseuillov) zakon ne velja več. Pri zelo velikih Re tudi v ceveh
velja kvadratni zakon upora, po katerem je tlačna razlika med začetkom in
koncem cevi sorazmerna kvadratu pretoka. Ta zveza pa ni enostavna, saj
je pretok odvisen tudi od hrapavosti sten in presega naše znanje fizike. Hi‑
trostni profil v turbulentnem toku tudi ni več paraboličen, ampak je enak
po vsem sredinskem delu žile (slika 9.1).

9.4 Idealne tekočine in Bernoullijeva enačba
Na koncu se za hip ustavimo pri znameniti Bernoullijevi enačbi, ki opisuje
tok idealnih nestisljivih tekočin. V idealnih tekočinah namreč ni trenja, za‑
to za njih velja zakon o ohranitvi mehanske energije. Bernoullijeva enačba
je ravno zakon o ohranitvi mehanske energije, zapisan za pretakanje teko‑
čin.

Na sliki 9.2A smo videli, da se lahko tekočini med tokom v cevi spre‑
meni hitrost in torej tudi kinetična energija. V splošnem bi bil lahko drugi
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konec cevi tudi na drugi višini, zaradi česar bi se tekočini spremenila tudi
potencialna energija. Iz zakona o ohranitvi energije vemo, da je spremem‑
ba vsote obeh energij tekočine enaka delu, ki ga okolica opravi na tekočini.
Izračunajmo to delo za primer, ko skozi cev steče prostornina označena
na sliki. Če s p1 označimo tlak na začetku cevi, je delo, ki ga na začetku
cevi opravimo pri potiskanju tekočine, enako A1 = Fs = p1S1ℓ1 = p1V ,
pri čemer smo upoštevali, da je sila F = pS in da je prostornina, ki se pri
tem pretoči, ravno V = S1ℓ1. Na enak način izračunamo delo, ki ga opra‑
vi tekočina na koncu cevi, kjer potiska tekočino pred seboj, A2 = p2V (tu
smo upoštevali, da je tekočina nestisljiva, zaradi česar sta prostornini na
začetku in na koncu cevi enaki – kolikor tekočine na začetku priteče v cev,
toliko je mora na koncu cev zapustiti). Zakon o ohranitvi energije se torej
zapiše kot:

p1V − p2V = Wp2 −Wp1 +Wk2 −Wk1 (9.13)

Ko upoštevamo, da je potencialna energija enaka Wp = mgh = ρV gh, ki‑
netična Wk = ½mv2 = ½ρV v2, pokrajšamo prostornino, ki je prisotna v
vseh členih, ter na nasprotne strani enačbe razporedimo člene z enakim
indeksom, dobimo Bernoullijevo enačbo:

1

2
ρv21 + ρgh1 + p1 =

1

2
ρv22 + ρgh2 + p2 . (9.14)

Bernoullijeva enačba torej pravi, da se vzdolž celotnega toka idealne teko‑
čine vsota (1

2
ρv2 + ρgh + p) ne spreminja. To vsoto si lahko predstavljamo

kot gostoto energije tekočine.
V realnih tekočinah je vedno prisotno nekaj trenja, zato Bernoullijeva

enačba velja le približno oz. velja tem slabše, čim večjo vlogo ima trenje.
Kljub temu nam enačba v določenih situacijah obnašanje lahko razloži vsaj
približno. Z Bernoulijevo enačbo lahko npr. ocenimo, kako je hitrost teko‑
čine, ki izteka iz posode, odvisna od tlaka v posodi (slika 9.4). V tem pri‑
meru je zgornja vsota enaka tako za tekočino v posodi kot tudi za tekočino
v curku, ki izteka. V posodi je hitrost tekočine majhna, tlak pa za ∆p večji
kot izven posode. Ker je višina na obeh straneh luknje v posodi enaka, lah‑
ko hitrost iztekanja v2 izračunamo iz ∆p = 1

2
ρv22 . Trenje tekočine, ki brizga

po zraku, je majhno, zato je v tem primeru uporaba Bernoullijeve enačbe
upravičena.

Pomembna splošna posledica Bernoullijeve enačbe je, da z zmanjša‑
njem hitrosti toka tlak v tekočini naraste. V arterijski anevrizmi (slika v
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p =p +Δp1 0

v =01

p =p2 0

v2

Slika 9.4: Shematični prikaz iztakanja tekočine iz posode, v kateri je tlak večji kot
zunaj. V tem primeru Bernoullijeva enačba še kar dobro velja, saj tekočina brizga
po zraku in je trenja relativno malo. Hitrost iztakanja tekočine lahko zato ocenimo
s pomočjo Bernoullijeve enačbe (enačba 9.14).

primeru 8.1) je presek žile povečan, zato se hitrost krvi tam zmanjša, tlak
krvi pa malo poveča. Napetost žilnih sten se zaradi tega pojava torej le še
dodatno poveča.
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9.5 Krvni obtok
Za konec poglavja o tekočinah pridobljeno znanje uporabimo za razume‑
vanje nekaterih značilnosti krvnega obtoka. Ob vsakem utripu srca levi
ventrikel kri iztisne v aorto, ki se nadaljuje v arterijo, manjše arterije in ka‑
pilare v organih. Od tam nadaljuje pot v vene in se nazadnje po veni cavi
vrne nazaj v srce v desni atrij (slika 9.5). Ta del obtoka se imenuje sistemski
obtok. Iz desnega atrija gre kri v desni ventrikel, od tam pa zaokroži po
pljučnem obtoku skozi pljučne kapilare in se vrne nazaj v srce v levi atrij.
Krvotok je zaokrožen, zato je prostorninski tok skozi pljučni obtok enak
prostorninskemu toku v sistemskem obtoku.

Slika 9.5: Shematični prikaz krvnega obtoka.

Sistemski obtok je daljši in večji, zato je tudi njegova upornost večja in
mora levi ventrikel ustvarjati veliko večji tlak kot desni. Zaradi utripanja
srca tlak v arteriji niha med sistoličnim (visokim) in diastoličnim (nizkim)
tlakom (slika 9.6A). V arteriji sistemskega obtoka tlak niha približno med
80 mmHg in 120 mmHg, v pljučni arteriji pa le med 8 mmHg in 25 mmHg.
Tlak v arteriji je dalj časa blizu diastoličnemi kot sistoličnemu, zato tudi sre‑
dnji arterijski tlak (angl. mean arterial pressure, MAP ) ni na sredini med
njima, temveč je bližje nižjemu (od njega je višji za približno eno tretjino
razlike, MAP ≈ pd + ⅓(ps − pd) ≈ 95mmHg).

Slika 9.6B prikazuje, kako se tlak spreminjajo vzdolž krvnega obtoka.
V nasprotju s cevmi imajo žile svojo podajnost (enačba 7.4), zato se ob vsa‑
kem povišanju tlaka v arteriji poveča tudi njen premer. Nihanje tlaka v
arterijah se zaradi podajnosti žil zaduši in ga v kapilarah in venah ni več.
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Slika 9.6: A) Shematični prikaz nihanja arterijskega tlaka v sistemskem obtoku za
osebo, ki ima normalni krvni tlak (120/80). Ko srce kri potisne v aorto, tlak naraste,
nato pa do konca srčne periode spet pada. Najvišji tlak se imenuje sistolični tlak
(ps), najnižji pa diastolični (pd). Ker je obdobje visokega tlaka krajše od obdobja
nizkega, je srednji arterijski tlak (MAP ) bližji diastoličnemu. B) Shematični prikaz
spreminjanja tlaka vzdolž sistemskega in pljučnega obtoka. V arterijah se še čuti
nihanje tlaka med sistoličnim in diastoličnim, od kapilar naprej pa se nihanje tlaka
zaradi upora in podajnosti žil popolnoma zaduši in utripanja krvnega tlaka ni
več zaznati. Največji padec tlaka je v malih arterijah in kapilarah, vzdolž velikih
arterij pa se le malo spreminja. Meritev krvnega tlaka bo zato dala praktično enak
rezultat, ne glede na to, kje na arteriji tlak izmerimo, npr. ali na nadlakti ali pri
zapestju.

Po drugi strani zaradi podajnosti arterij toka v njih ne moremo natančno
opisati zgolj s Hagen–Poiseuillevo enačbo, saj je njihov radij odvisen od
tlaka.

Ocenimo še hitrost krvi v aorti in veni cavi. Če predpostavimo, da je
presek aorte približno Sa = 2,5 cm2, vene cave pa približno Svc = 10 cm2 (v
literaturi najdemo za te vrednosti različne podatke) in vemo, da je pretok
krvi približno ΦV = 5 l/min , lahko s pomočjo enačbe 9.8 izračunamo pov‑
prečni hitrosti: va ≈ 33 cm/s in vvc ≈ 8 cm/s (slika 9.7). Po drugi strani je
znan podatek, da je povprečna hitrost v kapilarah približno vk ≈ 200μm/s,
iz česar dobimo oceno, da je celoten presek kapilar približnoSk = 4000 cm2.

Ocenimo še, ali je tok v aorti laminaren ali turbulenten. Če v račun za
Reynoldsovo število (enačba 9.4) vstavimo premer aorte (≈ 2 cm), gostoto
krvi (≈ 1060 kg/m3), njeno viskoznost (≈ 0,003Pa s) ter njeno povprečno
hitrost (≈ 33 cm/s), dobimo vrednost Re ≈ 2300. Pričakovati je torej, da je
tok v aorti ravno na meji med laminarnim in turbulentnim ‑ med diastolo
je lahko laminaren, med sistolo pa se lahko tudi zavrtinči.
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Slika 9.7: Shematični prikaz povpreč‑
ne hitrosti krvi in skupnega preseka žil
v sistemskem obtoku (prirejeno po [9]).
Ker je pretok krvi po vsem obtoku enak,
mora biti produkt teh dveh količin pov‑
sod enak.

Primer 9.2: merjenje krvnega tlaka

V primeru 6.1 smo predstavili merilec krvnega tlaka – sfigmomanometer – sedaj pa
si poglejmo še, kako poteka meritev krvnega tlaka. Pri meritvi najprej povečamo
tlak v manšeti (pm) nad sistolični tlak (ps), tako da manšeta stisne žilo in prekine
pretok po njej (slika A). Nato tlak v manšeti počasi spuščamo in s stetoskopom po‑
slušamo zvoke iz žile. Ko tlak v manšeti postane enak sistoličnem tlaku, se pretok
skozi žilo začne odpirati in skozi stetoskop zaslišimo t. i. Korotkovove zvoke, ki
so posledica brizgov krvi skozi prehod (slika B). Ko tlak v manšeti postane manjši
od diastoličnega tlaka (pd), se žila povsem odpre, v njej se spet vzpostavi laminar‑
ni tok in Korotkovovi zvoki prenehajo (slika C). Z merjenjem tlaka v manšeti in
hkratnim poslušanjem zvokov lahko tako določimo oba krvna tlaka.
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Na podoben način delujejo tudi avtomatski merilci tlaka, le da ne zaznavajo zvo‑
kov, ampak nihanje tlaka v manšeti, ki je posledica brizgov krvi (slika D).
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9.6 Viskoelastičnost
V tkivih je tipično več kot kot 70 % vode (še celo v kosteh je vode približno
30 %), zato se nam hitro postavi vprašanje, ali so z mehanskega stališča na‑
ša tkiva tekočine ali trdne snovi? Odgovor se seveda glasi, da niso niti eno
niti drugo, ampak imajo lastnosti obojega. Po eni strani se nam tkiva kaže‑
jo kot trdna snov in ne »tečejo«, po drugi strani pa je odziv tkiv na zunanjo
silo pogosto odvisen od tega, kako hitra je deformacija, in so v tem podob‑
ne tekočinam, pri katerih so sile upora odvisne od hitrosti. Take snovi so
viskoelastične. Obravnava takšnih snovi presega naše znanje, na kratko si
bomo ogledali le, kako si lahko viskoelastičnost sploh predstavljamo.

Za prožne (elastične) snovi velja Hookov zakon (F = kx, kjer je x veli‑
kost deformacije), za viskozne snovi pa linearni zakon upora (F = βv, kjer
je v hitrost deformacije, β pa je konstanta, ki je odvisna od viskoznosti, ve‑
likosti in oblike obravnavanega sistema, za premikanje kroglice po visko‑
zni tekočini je β = 6πηr). Viskoelastične snovi si lahko predstavljamo kot
kombinacijo elastičnega člena (vzmeti) in viskoznega člena (dušilke). Sli‑
ka 9.8 prikazuje enega od najenostavnejših modelov viskoelastične snovi.
Viskozni člen ima lastnost, da se počasnim deformacijam sploh ne upira,
z večanjem hitrosti deformacije pa postaja vedno »trši«. Take viskoelastič‑
ne snovi imajo pri hitrih deformacijah zato večji Youngov modul kot pri
počasnih. Take so npr. tudi kosti (slika 9.8B).
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Slika 9.8: A) Viskoelastične snovi si lahko predstavljamo, kot da so sestavljene iz
elastičnega člena (vzmeti) in viskoznega člena (dušilke). Les, mnoge polimere, pa
tudi kosti si lahko v prvem približku predstavljamo kot vzporedno vezani vzmet
in dušilko (t. i. Kelvin‑Voigtov model). Pri počasnih deformacijah dušilka nima
vloge, saj je sila upora pri majhnih hitrostih zanemarljiva, zato ima pri počasnih
deformacijah snov lastnost vzmeti. Pri hitrih deformacijah se zaradi dušilke snov
zunanji sili dodatno upira in navidez postaja trša. B) Zveza med obremenitvijo in
deformacijo za kortikalno kost. Pri hitri hoji je deformacija hitrejša, zato je pri njej
kost »trša« kot pri počasni hoji [9].
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Poglavje 10

Uvod v termodinamiko

10.1 Kaj je termodinamika?
V vseh biokemijskih in fizioloških procesih sodeluje ogromno število raz‑
ličnih atomov in molekul. Vsak protein je sestavljen iz več tisoč atomov, v
vsaki celici pa je lahko več 100 milijonov proteinov in še vsaj tisočkrat več
molekul vode (primer 10.1). Pri razumevanju obnašanja takih sistemov si
ne moremo prav dosti pomagati z Newtonovimi zakoni, ki smo jih srečali
pri mehaniki, saj je delcev v sistemu preprosto preveč, da bi lahko sledili
gibanju vsakega delca in njegovim interakcijam s sosedi. Na srečo pa tudi
v takih sistemih veljajo zakonitosti, ki sicer ne opisujejo obnašanja vsakega
delca posebej, a dobro opisujejo obnašanje sistema kot celote. Veja znano‑
sti, ki raziskuje obnašanje sistemov z veliko delci se imenuje termodinamika,
sisteme z veliko delci pa imenujemo termodinamski sistemi.

Za opisovanje stanja termodinamskega sistema ne moremo uporabljati
mikroskopske slike (kje je neka molekula ob nekem času in kakšna sila na‑
njo deluje), temveč uporabimo makroskopske količine, kot so gostota, masa,
koncentracija, prostornina, tlak ipd. Poleg tega bomo morali za opisovanje
termodinamskih sistemov vpeljati tudi nove pojme kot so temperatura, en‑
talpija, entropija in toplota. Po slednji je termodinamika tudi dobila svoje
ime.

Podobno kot pri mehaniki je tudi pri termodinamiki ključen pojem rav‑
novesje sistema, se pravi stanje, v katerem se od okolice izoliran sistem s
časom ne spreminja. Pozoren bralec se bo takoj vprašal, kako nam lah‑
ko razumevanje ravnovesja sploh pomaga pri opisovanju živih bitij, saj je
ravnovesno stanje ravno nasprotno od življenja. Odgovor je preprost: če‑
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prav se živi sistemi zares neprestano spontano spreminjajo, se spreminjajo
ravno v smeri proti svojemu ravnovesju. Če poznamo ravnovesno stanje
sistema, lahko torej ugotovimo, v katero smer se bo sistem spontano spre‑
minjal. Poleg tega so lahko tudi v živih bitjih predelki, ki so vsaj za kratek
čas približno v ravnovesju.

V tem poglavju bomo vpeljali ključne pojme termodinamike, nato pa v
nadaljevanju spoznali znamenita zakona termodinamike, ki spadata med
najbolj temeljne zakone narave. Prvi govori o ohranitvi energije, drugi pa
o entropiji in z njo povezanih spontanih spremembah sistema. Na koncu
bomo vse našteto uporabili pri razlagi nekaterih pomembnih fizioloških in
biokemijskih procesov.

Primer 10.1: koliko molekul vode je v tipični celici?

Množino snovi lahko opišemo na tri načine: z maso, s številom delcev v snovi
ali pa, ker je število delcev ponavadi ogromno, tudi z enoto mol, pri čemer je v
enem molu Avogadrovo število delcev, NA = 6,02 ·1023. Masa je s številom molov
povezana preko molske mase M , ki pove kolikšna je masa enega mola izbrane
snovi.
Primer: molska masa vode je približno M = 18 g/mol, kar pomeni, da 1mol vode
ustreza 18g oz. 18ml vode. Plini so precej redkejši od kondenzirane snovi in en
mol plina pri standardnih pogojiha zasede prostornino malo več kot 22 l.

Koliko je torej molekul vode v eni celici? Premer tipične človeške celice je reda
velikosti 10μm, prostornina pa torej približno 1000μm3. V celici je približno 70 %
vode. Število molov vode v celici je torej

n =
m

M
=

0,7V ρ

M
= 0,7 · 1000 · 10−18 m3 · 1000kg

m3 · mol
0,018kg

= 3,9 · 10−11 mol .

Število molekul dobimo tako, da število molov pomnožimo z Avogadrovim števi‑
lom:

N = nNA = 3,9 · 10−11 mol · 6,02 · 1023 mol−1 = 2,3 · 1013 .

V tipični celici je torej zares zelo veliko molekul (23 tisoč milijard molekul vode).
Tudi če bi bila koncentracija neke snovi v celici le 1 nM (nano‑molarna), bi bilo v
celici približno 1000 molekul te snovi.

aZa standardne pogoje obstajajo različni standardi. Pogosto se uporablja IU‑
PAC standard, po katerem standardni pogoji ustrezajo temperaturi 0 °C, tlaku
105 Pa in koncentraciji raztopine 1M. Obstajajo tudi standardi, ki uporabljajo tem‑
peraturo 20 °C ali pa tlak 1 atm = 101325Pa.
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10.2 Termično gibanje in temperatura
Molekule so veliko premajhne, da bi jih lahko neposredno opazovali, kljub
temu pa lahko lahko na osnovi opazovanja različnih pojavov sklepamo, da
se molekule v snovi neprestano gibljejo. Gibanje molekul vode lahko npr.
posredno zaznamo preko neurejenega spontanega gibanja mikroskopskih
delcev (koloidov) v mirujoči raztopini (slika 10.1A). Tako gibanje je v 19.
stoletju prvi opisal botanik Robert Brown, ki je pod mikroskopom opazo‑
val spontano naključno gibanje delcev cvetnega prahu v vodi, Albert Ein‑
stein pa je kasneje pokazal, da je to gibanje posledica naključnega gibanja
molekul vode, ki se v delec zaletavajo in ga porivajo sem ter tja. Einste‑
inova analiza je bila eden prvih trdnih dokazov za atomistično strukturo
sveta, o kateri se je ugibalo že od časov starih Grkov.

Naključnemu oz. Brownovemu gibanju molekul pravimo tudi termično
gibanje. Izkaže se namreč, da je to gibanje tesno povezano s temperaturo
snovi: višja kot je temperatura, večje je termično gibanje. Molekule tako ne‑
prestano nihajo z lastnimi frekvencami okoli svojih ravnovesnih leg (spo‑
mnimo se razdelka 5.3), v plinih in tekočinah pa se tudi premikajo in vrtijo
(slika 10.1B). V tem poglavju bomo najprej opisali, kako je s termičnim gi‑
banjem povezana znamenita plinska enačba, nato pa si bomo natančneje
ogledali še difuzijo v raztopinah. Poglavje bomo zaključili z razmislekom
o različnih tehnikah merjenja temperature.

A B

ν
ω

v

Slika 10.1: A) Shematični prikaz termičnega gibanja delca v vodi, do katerega pri‑
de zaradi naključnega zaletavanja z molekulami vode. Gibanje je naključno, zato
se delec v povprečju nikamor ne premakne, a s časom vseeno prepotuje vedno
večji prostor okoli izhodišča. Tako naključno gibanje imenujemo tudi Brownovo
gibanje. B) Shematični prikaz treh vrst termičnega gibanja molekul. Molekula se
lahko giblje na vse njej dostopne načine: lahko se npr. premika, vrti ali niha s svo‑
jo lastno frekvenco. V trdni snovi molekule le termično nihajo, saj se premikati ali
vrteti ne morejo.
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10.3 Plinska enačba
Povezava med termičnim gibanjem in temperaturo je še posebej očitna pri
plinih, pri katerih se molekule svobodno gibljejo in s trki ustvarjajo tlak na
stene prostora (slika 10.2A). Že v 17. stoletju so odkrili, da je tlak plina pri
dani temperaturi obratno sorazmeren njegovi prostornini oz. da je soraz‑
meren njegovi gostoti (več kot je molekul v prostoru, več je trkov na stene
prostora in višji je tlak), kar danes imenujemo Boylov zakon. Na začetku
19. stoletja, so ugotovili tudi, da je tlak plina pri dani prostornini soraz‑
meren njegovi temperaturi (večje kot je termično gibanje molekul plina,
močnejši so trki na stene), kar danes imenujemo Guy‑Lussacov zakon oz. da
je temperatura plina pri danem tlaku sorazmerna njegovi prostornini, kar
danes imenujemo Charlesov zakon. Vse te ugotovitve so kasneje združili v
znamenito plinsko enačbo:

pV = nRT , (10.1)

kjer je p tlak plina, V njegova prostornina, n število molov plina, T tem‑
peratura plina, R pa je splošna plinska konstanta, katere vrednost je R =
8,3 J ·mol−1 · K−1 (pozor: plinska konstanta je včasih podana na kilomol
snovi in se zapiše kot R = 8300 J · kmol−1 · K−1).

A B

p=F/S

p

T
T = 0 K

Slika 10.2: A) Molekule plina se zaradi termičnega gibanja zaletavajo v stene po‑
sode, kar občutimo kot tlak plina. Sila plina na steno posode je F = pS, kjer je S
površina stene, p pa tlak plina. Višja, kot je temperatura, večje je termično giba‑
nje in večji bo tlak plina. B) Temperatura in tlak idealnega plina sta sorazmerna,
temperaturi, pri kateri bi tlak padel na 0Pa, pa pravimo absolutna ničla in z njo
definiramo izhodišče Kelvinove temperaturne lestvice.
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Temperaturo moramo v plinsko enačbo vstavljati v enoti kelvin, pri če‑
mer je hkrati s plinsko enačbo definirano tudi izhodišče Kelvinove oz. ab‑
solutne temperaturne lestvice. Temperatura 0K je namreč tista temperatu‑
ra, pri kateri bi termično gibanje povsem zamrlo in bi tlak plina padel na
0 (slika 10.2B). V praksi temperature 0K sicer ne moremo doseči, v labo‑
ratoriju pa so se ji približali že na manj kot milijoninko kelvina. V vsak‑
danjem življenju namesto Kelvinove uporabljamo Celzijevo temperaturno
lestvico, po kateri je pri standardnem tlaku ledišče vode pri 0 °C (oz. pri‑
bližno 273K), vrelišče pa pri 100 °C (oz. približno 373K). Obe tempera‑
turni lestvici se razlikujeta le v izhodišču1, ne pa tudi v enoti, zato lahko
razlike temperatur enakovredno izražamo v kelvinih ali stopinjah celzija:
∆T [°C] = ∆T [K]. V ZDA za merjenje temperature uporabljajo Fahren‑
heitovo lestvico, pri kateri pa je enota drugačna kot pri Kelvinovi lestvici,
zato preračunavanje iz ene v drugo ni tako enostavno (primer pretvarjanja
stopinj Fahrenheita smo prikazali v uvodnem poglavju, primer 1.5).

Omenimo naj tudi, da se pri termodinamiki pogosto uporablja Boltz‑
mannovo konstanto, kB = 1,38 · 10−23 J · K−1, ki je ekvivalentna plinski kon‑
stanti. Razlika med obema konstantama je le v tem, da plinsko konstan‑
to uporabljamo, če množino snovi merimo v molih, Boltzmannovo pa, če
množino snovi merimo v številu delcev. Z Boltzmannovo konstanto se
plinska enačba zapiše pV = NkBT , kjer jeN število molekul plina. Poveza‑
va med obema konstantama je Avogadrovo število,R = NAkB. Spomnimo
se tudi, da si v praksi lahko vrednost plinske konstante zapomnimo še dru‑
gače: pri sobni temperaturi (T = 20 °C) in normalnem tlaku (p = 105 Pa),
je prostornina enega mola idealnega plina približno 24 litrov.

Plinska enačba natančno velja le za idealne pline, tj. za pline iz neskonč‑
no majhnih molekul, med katerimi ni interakcij. Za realne pline tega ne
moremo trditi, a lahko kljub temu plinsko enačbo uporabimo tudi pri njih,
če je le njihova gostota dovolj majhna. Plinska enačba velja tudi za mešani‑
ce idealnih plinov, saj se molekule v njih med seboj po definiciji ne čutijo in
ena za drugo ne morejo vedeti, kakšne vrste so. V skladu s plinsko enačbo
vsaka vrsta plina neodvisno od drugih ustvarja svoj delni (parcialni) tlak (za
i‑to vrsto plina v mešanici velja piV = niRT ), celotni tlak mešanice plina
pa je kar vsota delnih tlakov vsake od sestavin (p =

∑
pi, primer 10.2).

1Po natančni definiciji Celzijeve temperaturne lestvice je 0 °C enako 273,15K, vendar
lahko pri opisovanju fizioloških procesov decimalke pogosto brez škode zaokrožimo.
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Primer 10.2: delni tlaki plinov v zraku

V navadnem suhem zraku je približno 78 % molskega deleža dušika, 21 % kisika in
1 % drugih plinov, v normalno vlažnem zraku pa je zraven še približno 0,5 % vo‑
dne pare. Pri normalnem zračnem tlaku se molekule teh plinov gibljejo praktično
neodvisno druga od druge, zato k celotnemu zračnemu tlaku vsak od teh plinov
prispeva svoj delni tlak, ki je v skladu s plinsko enačbo kar sorazmeren njegovemu
molskemu deležu. Če je zračni tlak 105 Pa, je torej delni tlak dušika v suhem zraku
78kPa, delni tlak kisika 21kPa, skupni tlak ostalih plinov pa približno 1kPa.
Če ima pacient pomanjkanje kisika, mu lahko dovajamo tudi zrak z večjim dele‑
žem kisika, v skrajnih primerih tudi 100 % kisik. V še bolj kritičnih primerih (npr.
pri zastrupitvi z ogljikovim monoksidom) lahko uporabimo tudi hiperbarično te‑
rapijo, pri kateri pacient v hiperbarični komori vdihava zrak pod višjim tlakom
od normalnega. Pri tem pa moramo biti pazljivi, saj postane kisik pri visokih del‑
nih tlakih zelo toksičen. Dihanje kisika z delnim tlakom 4 bare lahko že v pol ure
povzroči hude okvare možganov in komo. Na učinke visokega tlaka vdihanega
zraka morajo biti pozorni tudi potapljači, ki zrak pod visokim tlakom vdihavajo
iz jeklenk. Pri tem ni težava le previsok delni tlak kisika, ampak tudi dušika, ki
pri visokih delnih tlakih deluje narkotično in potapljaču povzroči t. i. globinsko
pijanost.
Za vajo s pomočjo plinske enačbe ocenimo, koliko molov dušika in kisika vdih‑
nemo v normalnih pogojih z globokim vdihom, ko vdihnemo približno 3 l zraka.
Po plinski enačbi je število molov plina v danem volumnu sorazmerno delnemu
tlaku tega plina:

ni =
piV

RT
(10.2)

Za kisik tako dobimo

nO2
=

21 · 103 Pa · 3 · 10−3 m3 ·mol · K
8,3 J · 293K

= 0,026mol ,

pri čemer smo upoštevali sobno temperaturo 20 °C = 293K. Ustrezna vrednost za
dušik je skoraj štirikrat večja, nN2 = 0,096mol.

10.4 Difuzija
Termično gibanje molekul posredno zaznamo tudi tudi pri difuziji v raz‑
topini. Če npr. v vodo kapnemo kapljico črnila, bodo molekule črnila bro‑
wnovsko tavale naokrog in se s časoma razširile po vsej dostopni prostorni‑
ni. Potovanje posamezne molekule je povsem naključno in ni usmerjeno v
nobeno določeno smer, vseeno pa s časom molekula prepotuje vedno večji
prostor okoli izhodišča (slika 10.1A). V povprečju se molekula torej vedno
giblje okoli izhodišča, zahtevnejši račun pa pokaže, da njena povprečna
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oddaljenost od izhodišča narašča s kvadratnim korenom časa:

d =
√
6Dt , (10.3)

kjer je d oddaljenost molekule od izhodišča2. KonstantoD imenujemo difu‑
zijska konstanta in opisuje hitrost difuzije – večja kot je difuzijska konstanta,
hitreje tavajo molekule naokoli. Izkaže se (to je prvi pokazal Einstein), da
je difuzijska konstanta v prvem približku odvisna od temperature in pa
od velikosti viskoznih sil, ki ovirajo molekulo pri gibanju. Če za slednje
uporabimo Stokesovo formulo za viskozni upor (enačba 9.2), dobimo za
velikost difuzijske konstante zelo uporabno zvezo:

D ≈ kBT

6πrη
, (10.4)

kjer je kB Boltzmannova konstanta, T temperatura, r polmer molekule oz.
delca, ki difundira, η pa viskoznost raztopine. Zgornja enačba velja za ide‑
alni primer s povsem okroglimi molekulami, v splošnem pa je lahko izraz
v imenovalcu tudi drugačen. V vsakem primeru pa bo veljalo, da je di‑
fuzija večja pri višji temperaturi in da manjši delci difundirajo hitreje kot
veliki.

Meritve pokažejo, da je pri 37 °C difuzijska konstanta za majhne mole‑
kule v vodi (npr. za H2O ali O2) reda velikosti 2 · 10−9 m2/s = 2μm2/ms,
za večje organske molekule (npr. za glukozo) nekajkrat manjša, za veli‑
ke globularne proteine kot je hemoglobin pa reda velikosti 0,1μm2/ms. Z
uporabo enačbe 10.3 ugotovimo, da male molekule tipično celično razdaljo
10μm z difuzijo prepotujejo v nekaj 10 ms, veliki proteini pa za to razdaljo
potrebujejo kar približno 1 s.

Naključno gibanje molekul ima za posledico, da snov v raztopini od
izhodišča enakomerno difundira na vse strani. Izkaže se, da v primeru, ko
v raztopino kapnemo kapljico topljenca, odvisnost koncentracije topljenca
v prostoru opiše kar Gaussova krivulja, katere širina je ravno sorazmerna√
Dt (slika 10.3).

Potovanje molekul z difuzijo torej poteka bistveno drugače, kot potova‑
nje pri enostavnem premem gibanju. Pri slednjem oddaljenost od izhodi‑
šča narašča premo sorazmerno času, pri difuziji pa povprečna oddaljenost

2Strogo vzeto je d koren povprečne oddaljenosti od izhodišča. Za take količine se v
angleški literaturi uporablja izraz RMS (root mean square). Zgornja enačba je zapisana za
difuzijo v 3D prostoru. Če gre za 2D difuzijo po membrani, je v enačbi številka 4 namesto
6.
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Slika 10.3: Ko v raztopino kapnemo topljenec, se zaradi difuzije njegova koncen‑
tracija širi v obliki Gaussove krivulje. Površina pod krivuljo je vseskozi enaka in
je sorazmerna celotni količini topljenca, širina krivulje (pri statistiki to širino ime‑
nujemo standardni odklon) pa je sorazmerna

√
Dt, kjer je D difuzijski koeficient.

Prikazan je primer za difuzijo glukoze v vodi. Kot vidimo, je lahko difuzija precej
počasna, zato v večjih sistemih večino transporta snovi poteka s konvekcijo (v te‑
lesu npr. s krvnim obtokom), celice pa so za usmerjen transport na večje razdalje
razvile različne oblike aktivnega transporta.

od izhodišča narašča sorazmerno kvadratnemu korenu časa. Za difundi‑
ranje preko enkrat večje razdalje tako molekule potrebujejo kar štirikrat
več časa. V celicah in tkivih je difuzija sicer zelo pomemben način tran‑
sporta snovi in celične signalizacije, a za transport na velike razdalje ni
efektivna (sploh npr. v aksonih nevronov, ki so lahko dolgi tudi do 1 m
in več). Celice zato uporabljajo tudi različne oblike aktivnega transporta,
npr. transport s pomočjo molekularnih motorjev kinezinov, ki svoj tovor
usmerjeno prenašajo vzdolž mikrotubulov in dosežejo hitrost tudi do ne‑
kaj μm/s (primer 4.2). Za večje mnogocelične organizme je tudi ta hitrost
premajhna, zato so se pri njih za transport snovi po telesu razvili še dodatni
mehanizmi, npr. krvni obtok.

Difuzija v celicah lahko poteka tudi precej počasneje, kot napoveduje
enačba 10.3, saj jo ovirajo različne strukture v celicah, npr. citoskelet (slika
10.4C) in celične membrane (za difuzijo snovi preko membran veljajo še
dodatne zakonitosti, ki jih bomo spoznali kasneje v posebnem poglavju). V
tkivih difuzijski koeficient zato tudi ni nujno enak v vse smeri – v možganih
npr. voda hitreje difundira vzdolž živčnih vlaken kot pravokotno na njih,
saj ji potovanje v pravokotni smeri otežuje celična membrana, s katero so
obdana vlakna. To neizotropno difuzijo izrablja sodobna tehnika slikanja
z magnetno resonanco, s katero lahko na osnovi meritev difuzije vode v
možganih določimo usmerjenost živčnih vlaken (slika 10.4B).
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A B
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Slika 10.4: Primeri difuzije v telesu. A) Časovna odvisnost oddaljenosti molekule
od izhodišča za različne vrste transporta po celici (v splošnem lahko to odvisnost
zapišemo kot r ∝ tα). Za navadno difuzijo velja, da oddaljenost molekule od
izhodišča narašča sorazmerno s kvadratnim korenom časa (v tem primeru velja
α = 1/2, enačba 10.3). V celicah difuzija pogosto poteka še počasneje od nava‑
dne difuzije, saj jo ovirajo različne celične strukture, npr. citoskelet ( α < 1/2).
Zaradi tega v celicah obstaja tudi aktivni transport (npr. z molekularnimi motorji
kinezini, ki se premikajo po mikrotubulih), s katerim je mogoče snov transpor‑
tirati hitreje in bolj usmerjeno kot z navadno difuzijo (α > 1/2). B) Primer slike
možganov, posnete s tehniko difuzijska tenzorska magnetna resonanca [11]. To je
posebna tehnika slikanja z magnetno resonanco, pri kateri lahko izmerimo difu‑
zijski koeficient vode v različnih smereh. Ker voda lažje difundira vzdolž živčnih
vlaken kot pravokotno na njih, lahko s to tehniko zaznamo usmerjenost živčnih
vlaken v možganih.

10.5 Merjenje temperature
Temperatura je eden ključnih parametrov v vseh termodinamskih siste‑
mih, zato ni presenetljivo, da so od nje odvisne mnoge lastnosti snovi. Že
pri idealnem plinu smo videli, da je pri danem tlaku od temperature odvi‑
sna njegova prostornina oz. gostota. Podobno velja praktično za vse snovi,
le da je v splošnem zveza med prostornino in temperaturo sorazmerna le
v omejenem temperaturnem območju. V splošnem to zvezo zapišemo z
enačbo

∆V

V
= β∆T , (10.5)
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kjer koeficient β imenujemo temperaturni koeficient prostorninskega raztezka.
Ta koeficient je odvisen od vrste snovi, lahko pa je odvisen tudi od tempe‑
rature (tabela 10.1). Iz zgornje enačbe vidimo, da iz vrednosti koeficienta
razberemo, kolikšna bo relativna sprememba prostornine (∆V /V ) pri dani
spremembi temperature (∆T ).

snov amalgam zobni enamel titan jeklo

β [10−6/K] 75 34,2 25,5 36

snov voda (20 °C) voda (0 °C) etanol živo srebro

β [10−6/K] 210 −70 1100 180

Tabela 10.1: Temperaturni koeficienti prostorninskega raztezka nekaterih snovi
pri 20 °C. Številke povejo, za koliko milijonink se poveča prostornina snovi, če se
ji temperatura spremeni za eno stopinjo (dentalni podatki so povzeti po [12]).

Pri večini snovi je koeficient prostorninskega raztezka pozitiven, se pra‑
vi, da se snovi ob višanju temperature prostornina povečuje, saj se gradni‑
ki snovi zaradi povečanega termičnega gibanja malo razmaknejo. Ni pa
vedno tako. Pri vodi je npr. v temperaturnem območju od 0 °C do 4 °C
koeficient prostorninskega raztezka negativen, saj se ji v tem območju z
večanjem termičnega gibanja prostornina manjša. Koeficient prostornin‑
skega raztezka je negativen tudi pri mnogih polimerih, npr. pri gumi. S
temperaturnimi raztezki imajo sicer največ opraviti gradbinci, a moramo
biti nanje pozorni tudi v medicini: bilo bi npr. zelo nerodno, če bi nam
zaradi neusklajenih koeficientov temperaturnega raztezka zoba in zobne
plombe ob lizanju sladoleda slednje izpadale iz zob.

Zaradi termičnega gibanja so od temperature odvisne tudi mnoge dru‑
ge lastnosti snovi. Tako sta od temperature odvisni npr. površinska na‑
petost in viskoznost tekočin, pa tudi mnoge električne lastnosti snovi. Ne‑
katere od teh temperaturnih odvisnosti s pridom uporabljamo za merjenje
temperature. Obstaja veliko različnih vrst termometrov, od katerih ima
vsaka svoje prednostih in slabostih (primer 10.3). Če bi npr. radi izmerili
temperaturo majhnemu vzorcu ali pa bi radi sledili hitrim spremembam,
si s klasičnim alkoholnim termometrom ne moremo kaj dosti pomagati in
je bolje, da vzamemo termometer, ki ima majhno toplotno kapaciteto in se
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zato spremembam temperature hitro prilagaja. V medicini tudi ni vsee‑
no, na katerem delu telesa temperaturo izmerimo, saj je npr. v ušesu malo
drugačna povprečna temperatura kot pod pazduho.

Primer 10.3: o različnih vrstah termometrov
Različne vrste termometrov za merjenje temperature izrabljajo temperaturno od‑
visnost različnih lastnosti snovi. Klasični termometri delujejo na principu tem‑
peraturnega raztezanja alkohola ali živega srebra (slika A). Uporabo slednjih opu‑
ščamo zaradi strupenosti živega srebra. Najpreprostejši elektronski termometri za
merjenje telesne temperature so t. i. digitalni termometri (slika B), ki za merjenje
temperature izrabljajo odvisnost električnih lastnosti kovin od temperature (bra‑
lec, ki bi o načinu delovanja teh termometrov rad izvedel več, lahko na internetu
pobrska za izrazoma termočlen ali termistor). V primerjavi s klasičnimi termome‑
tri lahko digitalni termometri temperaturo izmerijo hitreje, saj se mora pri njih na
merjeno temperaturo ogreti le majhna kovinska kapica na vrhu termometra. Pri
klasičnih termometrih se mora na merjeno temperaturo ogreti celotna bučka s te‑
kočino, kar ponavadi traja vsaj nekaj minut (kasneje bomo videli, da so digitalni
termometri hitrejši zaradi manjše toplotne kapacitete).

A B DC

Še hitrejši od digitalnih so brezkontaktni termometri za merjenje temperature v
ušesu (slika C) ali na čelu (slika D). Ti ponavadi delujejo na principu merjenja in‑
frardečega termičnega sevanja, ki ga zaradi svoje temperature oddaja površina te‑
lesa (več o sevanju toplih teles se bomo naučiti v poglavju Valovanje).
Poudarimo naj, da je nemogoče reči, katera vrsta termometrov je »najboljša,« saj
ima vsaka vrsta svoje dobre in slabe lastnosti. V določenih situacijah uporabljamo
ene, v drugih pa druge. Za kalibriranje termometrov so včasih npr. uporabljali
plinske termometre, ki za merjenje temperature izkoriščajo kar temperaturno raz‑
tezanje plina po plinski enačbi, vendar pa so za vsakdanjo uporabo preokorni. Kot
zanimivost povejmo še, da je enega prvih plinskih termometrov (oz. sploh enega
prvih termometrov za merjenje telesne temperature) v začetku 17. stoletja izdelal v
Kopru rojeni Santorio Santorio, ki je bil kot profesor v Padovi kolega znamenitega
Galileo Galileja (slika 1.1).
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Poglavje 11

Notranja energija in prvi zakon
termodinamike

V poglavju o mehaniki smo spoznali, da je energija pomemben pojem, ki
nam pomaga pri razumevanju marsikaterega naravnega pojava. Pri me‑
haniki se nam je energija zaradi trenja včasih »izgubljala« v toploto, zaradi
česar je imel zakon o ohranitvi energije pri mehaniki le omejeno veljavo.
V tem poglavju bomo izgubljeno energijo poiskali na mikroskopskem ni‑
voju in tako dokončno zapisali zakon o ohranitvi energije. Ob tem bomo
tudi spoznali, da si lahko sistemi energijo izmenjujejo v obliki dela in to‑
plote ter da je mogoče slednjo enostavno izmeriti s pomočjo kalorimetra.
Na koncu poglavja bomo spoznali še entalpijo, ki bo za nas sicer nov in
malce abstrakten pojem, a tudi zelo uporaben za opisovanje biokemijskih
procesov.

11.1 Notranja energija
Zaradi termičnega gibanja ima vsaka molekula svojo kinetično energijo.
Poleg tega imajo lahko molekule tudi druge vrste energij: energijo, ki je
spravljena v medmolekulskih interakcijah, energijo interakcij med elek‑
troni in jedrom, jedrsko energijo v jedrih atomov, lahko pa tudi različne
potencialne energije, ki jih imajo v zunanjih poljih, npr. v gravitacijskem
ali električnem. Celotno energijo sistema, tj. seštevek vseh energij vseh
delcev v sistemu, imenujemo notranja energija sistema, Wn. Na srečo pri
opisovanju sistemov ni treba vedno upoštevati vseh vrst energije, temveč
le tiste, ki se v dani situaciji spreminjajo. Pri opisovanju kemijskih reakcij
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so npr. najpomembnejše kinetična energija molekul in energije vezi med
atomi in molekulami, ni pa potrebno upoštevati gravitacijske potencialne
in jedrskih energij, saj te pri kemijskih reakcijah ostajajo nespremenjene.

Molekule v termodinamskih sistemih neprestano trkajo in interagirajo
s sosedami in si pri tem izmenjujejo energijo. Zaradi tega se posameznim
molekulam energija neprestano spreminja, poleg tega pa vse molekule ni‑
majo v nobenem trenutku enake energije. Vseeno velja, da imajo v ravno‑
vesnem stanju sistema vse molekule enako energijo v povprečju. Pri tem
se energija ne prerazporeja le med vsemi delci v sistemu ampak tudi med
različnimi vrstami energije, ki so za dani delec dostopne, npr. med kinetič‑
no energijo in energijo nihanja molekul. Izkaže se, da za preproste sisteme
velja t. i. ekviparticijski izrek, ki pravi, da ima v povprečju vsak delec v vsa‑
kem možnem gibanju (v vsaki svoji prostostni stopnji) spravljeno natanko
1
2
kBT energije. V primeru 11.1 bomo izračunali, kolikšna je ta energija v

joulih.

Primer 11.1: termična energija molekul pri normalnih pogojih

Povprečno vrednost energije, ki jo imajo molekule zaradi svojega termičnega giba‑
nja, imenujemo tudi termična energija in je reda velikosti kBT . Pri sobni temperaturi
(T = 293K) je vrednost tega produkta enaka

kBT = 1,38 · 10−23 JK−1 · 293K ≈ 4 · 10−21 J.

Termična energija molekule v snovi je torej zelo majhna, a ne pozabimo, da je mo‑
lekul v tipičnem sistemu zelo veliko.
Pri biokemijskih procesih se energije ponavadi podaja na mol snovi. Če je termična
energija na molekulo enaka kBT , je termična energija na mol enaka RT oz.

RT = 8,3 Jmol−1K−1 · 293K ≈ 2,5kJ/mol ≈ 0,6kcal/mol.

To številko si je vredno zapomniti, saj nam bo pomagala pri ocenjevanju veliko‑
sti energij v biokemijskih procesih. Stabilnost kemijskih vezi lahko npr. ocenimo
s primerjavo disociacijske energije s termično: pri močnih vezeh je disociacijska
energija mnogo večja od termične energije, pri šibkih vezeh pa je le malo večja, za‑
to se jih del lahko pretrga že zaradi termičnega gibanja in trkanja med sosednimi
molekulami (ne pozabimo ‑ zgornja številka predstavlja povprečno energijo, del
molekul ima zato še večjo energijo). Če bi bila disociacijska energija manjša od ter‑
mične, o trajni vezi sploh ne bi mogli govoriti, saj bi bilo za pretrganje vezi dovolj
že povprečno termično gibanje.

Notranja energija preprostih termodinamskih sistemov se v splošnem
veča z višanjem temperature, saj se pri tem veča termično gibanje mole‑
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kul oz. njihova kinetična energija, a ta odvisnost ponavadi ni enostavna.
Odvisnost med notranjo energijo in temperaturo je enostavna le v primeru
idealnih plinov, ki si ga bomo podrobneje pogledali v nadaljevanju.

11.2 Notranja energija idealnega plina
Osnovna značilnost idealnih plinov je, da med njihovimi molekulami ni
interakcij. Če na obnašanje plinov ne vplivajo kakšne potencialne energije,
je notranja energija idealnega plina torej kar enaka skupni kinetični energiji
molekul. Ker pa je slednja preko ekviparticijskega izreka neposredno po‑
vezana s temperaturo, je tudi notranja energija idealnega plina neposredno
povezana s temperaturo:

Wn i.p. = N · 1
2
NpkBT =

1

2
Np · nRT , (11.1)

kjer jeN število molekul plina, n število molov plina,Np pa število prosto‑
stnih stopenj ene molekule. Notranja energija je odvisna od števila prosto‑
stnih stopenj molekul plina, saj je po ekviparticijskem izreku v vsaki dosto‑
pni prostostni stopnji 1

2
kBT termične energije. Več‑atomni plini imajo več

prostostnih stopenj in torej pri dani temperaturi večjo notranjo energijo kot
eno‑atomni (slika 11.1).

x x x

y y y

z z z
A B C

Slika 11.1: A) Enoatomna molekula plina se lahko v prostoru giblje v treh neodvi‑
snih smereh (ima tri prostostne stopnje), zato je po ekviparticijskem izreku njena
kinetična energija v povprečju enaka 3

2kBT . B)Dvoatomna oz. linearna molekula
plina se lahko poleg tega tudi vrti okrog dveh osi (ima pet prostostnih stopenj) in
ima v povprečju skupno 5

2kBT energije. C)Večatomna molekula se lahko giblje na
šest neodvisnih načinov (tri translacije in tri rotacije) zato ima v povprečju 6

2kBT
energije.
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V splošnem lahko molekule več‑atomnih plinov tudi nihajo, a je pri sob‑
ni temperaturi termična energija premajhna, da bi lahko to nihanje vzbu‑
dila. Izjema je npr. CO2, ki zaradi termične energije tudi niha in ima zato
tudi pri sobni temperaturi šest prostostnih stopenj.

Gibanje po prostoru je v vsakem primeru povezano s tremi prostostni‑
mi stopnjami, zato je povprečna translacijska kinetična energija ene mole‑
kule enaka za vse vrste plinov:

Wk1 =
1

2
m1v

2 =
3

2
kBT ⇒ v =

√
3kBT

m1

, (11.2)

pri čemer smo zm1 označili maso ene molekule plina, z v pa njeno hitrost.
Ker imajo v povprečju vse molekule enako termično energijo, je v povpre‑
čju hitrost molekul sorazmerna kvadratnemu korenu razmerja med tem‑
peraturo in maso ene molekule. Pri dani temperaturi se torej v povprečju
lažje molekule gibljejo hitreje kot težje, pri vseh pa je gibanje tem hitrej‑
še, čim višja je temperatura. Zgornja enačba velja v povprečju, dejanske
hitrosti posameznih molekul pa so pri tem porazdeljene po t. i. Maxwell–
Boltzmannovi porazdelitvi (slika 11.2).

0 500 1000 1500 2000

v	[m/s]

P(v)
oO  pri 20 C2

(oz. majhno razmerje  T/m)

o
He pri 20 C

(oz. veliko razmerje T/m)

Slika 11.2: Porazdelitev hitrosti molekul kisika in helija pri sobni temperaturi.
Pri sobni temperaturi je povprečna hitrost prvih približno 440m/s, drugih pa pri‑
bližno 1250m/s. Z višanjem temperature se hitrosti molekul večajo, saj iz ekvi‑
particijskega izreka za idealne pline sledi, da so hitrosti plina sorazmerne

√
T/m

(enačba 11.2). Povprečna hitrost molekul helija (M = 4 g/mol) je zato
√
8 krat

večja od povprečne hitrosti molekul kisika (M = 32 g/mol). Porazdelitev hitrosti
molekul kisika bi se rdeči krivulji približala pri temperaturi 8 · 293K ≈ 2344K.
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11.3 Delo, toplota in prvi zakon
termodinamike

Oboroženi z znanjem o notranji energiji lahko posplošimo zakon o ohra‑
nitvi mehanske energije, ki smo ga spoznali pri preprostih mehanskih sis‑
temih. Posplošitev, ki velja za vse sisteme v naravi, se imenuje prvi zakon
termodinamike in pravi:

Energija sistema ne more nastajati iz nič ali izginjati v nič. Spre‑
memba notranje energije sistema je enaka energiji, ki jo sistem
izmenja z okolico.

Prvi zakon termodinamike je torej zelo preprost, a je kljub temu (ali pa
ravno zato) eden od najbolj fundamentalnih zakonov narave. Ljudje že od
nekdaj iščejo načine, kako ga prelisičiti, saj je bila energija od nekdaj dra‑
gocena dobrina in bi ji bilo dobro proizvajati »iz nič«. Seveda so pri tem
iskanju žal neuspešni. Preden si pogledamo nekaj praktičnih posledic pr‑
vega zakona termodinamike, si oglejmo nekaj načinov prehajanja notranje
energije iz sistema v sistem.

V poglavju o mehaniki smo videli, da lahko preprostemu mehanskemu
sistemu energijo spremenimo s pomočjo mehanskega dela, ki ga izračuna‑
mo kot produkt sile in poti, na kateri je ta sila delovala. Enako velja tudi
za sisteme z veliko delci, le da na njih ne moremo delovati s točkasto si‑
lo, temveč silo na površino, tj. s tlakom. Delo se opravi le, če sila deluje
na določeni poti, kar se v termodinamskih sistemih pozna kot sprememba
prostornine. Kratek račun pokaže (slika 11.3A), da je delo v termodinam‑
skih sistemih enako

A = −p∆V , (11.3)

kjer je p tlak, s katerim okolica pritiska na sistem, ∆V pa je sprememba
prostornine sistema. Predznak dela smo definirali tako, da je delo pozi‑
tivno, če ga opravi okolica, in negativno, če ga opravi sistem. Ker je tlak
vedno pozitiven, bo sistem ob večanju prostornine (∆V > 0) okolico od‑
rival in zato opravljal delo (A < 0). Po drugi strani bo delo pozitivno, če
okolica stisne sistem in mu s tem zmanjša prostornino (∆V < 0).

Zgornja enačba za delo velja le za primere, ko se tlak sistema med opra‑
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A Q

A B

Δx

Slika 11.3: Shematični prikaz dveh glavnih načinov dovajanja energije v sistem.
A) Pri dovajanju mehanskega dela z zunanjo silo stisnemo molekule v sistemu,
pri čemer na sistem delujemo s tlakom p = F/S, kjer je S površina, na katero
deluje sila. Meja sistema se premakne ∆x, prostornina sistema pa se zaradi tega
zmanjša za ∆V = ∆xS (sprememba prostornine je negativna). Energija sistemu
se pri tem poveča za A = −p∆V (ker je ∆V < 0, bo A > 0). B) Dovajanja toplote
s termičnim stikom z vročim telesom. V vročem telesu je termično gibanje večje
in se preko trkov molekul razširi po vsem sistemu. V nasprotju z delom poteka
dovajanje energije s toploto preko neurejenega gibanja molekul.

vljanjem dela ne spreminja. Če se tlak med opravljanjem dela spreminja,
moramo delo izračunati z integralom A = −

∫
pdV . Vidimo tudi, da pri

nespremenjeni prostornini (∆V = 0) sistem z okolico ne izmenja nič me‑
hanskega dela, ne glede na to ali se v okolici morda spreminja tlak.

Že pri mehaniki smo spoznali, da poleg dela obstajajo še drugi načini
izmenjave energije, ki pa so bili mehaniki »nevidni.« Predstavljajmo si, da
staknemo en vroč in en hladen predmet. Molekule v vročem predmetu
se termično gibljejo hitreje kot molekule v hladnem, ker pa sta predmeta v
stiku, se bo njihova kinetična energija preko trkov počasi prenesla na mole‑
kule v hladnejšem predmetu, ne da bi se pri tem opravilo delo (slika 11.3B).
Pravimo, da toplota prehaja s toplejšega na hladnejše telo1, označujemo pa
jo s simbolom Q. Prehajanje toplote poteka, dokler se temperatura obeh
teles ne izenači.

Tako delo in toplota povečata energijo molekul v sistemu, le da pri de‑
lu energijo dobi urejeno veliko molekul hkrati, pri toploti pa se energija
neurejeno prenaša med posameznimi molekulami. Pri mehaniki smo ve‑

1Opozorimo naj, da temperatura in toplota nikakor nista ista stvar! Temperatura pove
kako je nekaj vroče ali hladno in jo merimo v K ali °C, toplota pa je eden od načinov za
prehajanje energije med sistemi in ima enoto J. Zmeda je velika tudi zato, ker je starinski
izraz za termometer »toplomer.« V izogib zmedi ta izraz počasi opuščamo.
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dno obravnavali celo telo hkrati in posameznih molekul nismo videli, zato
nam je bila toplota takrat »nevidna.«

Sedaj lahko prvi zakon termodinamike zapišemo tudi z enačbo:

∆Wn = A+Q . (11.4)

Pri tem smo delo in toploto definirali tako, da sta pozitivna, če iz okolice
prideta v sistem, ter negativna, če ju sistem odda okolici.2 Zgoraj opisana
delo in toplota sta sicer zelo pogosta načina za prehajanje energije, nista pa
edina. Delo lahko npr. dovajamo tudi v obliki električnega dela, kar bo‑
mo spoznali pri poglavju o elektriki in magnetizmu. Energija lahko med
sistemi prehaja tudi v obliki elektromagnetnega sevanja. Če gre za infrar‑
deče sevanje, je to kar »toplota,« saj se tako sevanje absorbira nespecifično
v celem telesu in s tem poveča neurejeno termično gibanje molekul v siste‑
mu. Po drugi strani se lahko fotoni elektromagnetnega sevanja absorbirajo
tudi na bolj urejen način, kar se dogaja npr. pri fotosintezi, pri kateri rastli‑
ne energijo elektromagnetnega sevanja s sonca uporabljajo za izdelovanje
ogljikovih hidratov.

11.4 Kalorimetrija
Ena od najpogostejših posledic dovajanja toplote v sistem je segrevanje, se
pravi višanje njegove temperature. V splošnem je sprememba temperature
sistema kar sorazmerna količini izmenjane toplote:

Q = C∆T , (11.5)

pri čemer koeficient C imenujemo toplotna kapaciteta sistema in v dovolj
majhnih temperaturnih območjih ni odvisen od temperature. Zgornja enač‑
ba velja tudi za odvzemanje toplote, v takem primeru sta tako Q kot ∆T
pač negativna (razmislite, ali je C lahko negativen!). Če je sistem iz homo‑
gene snovi, lahko vpeljemo še specifično toploto snovi in jo označimo s c, pri

2Opozorimo naj, da je predznak za delo v anglosaški literaturi včasih definiran ravno
obratno, se pravi da je delo pozitivno, če ga sistem opravlja. S tako definicijo se prvi zakon
zapiše kot ∆Wn = Q−A.
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čemer velja C = mc, kjer je m masa sistema. Za homogene sisteme lahko
zgornjo enačbo torej zapišemo kot

Q = mc∆T , (11.6)

Te enačba se lepo sklada z našo intuicijo: večji kot je sistem, več toplote
potrebujemo, da ga segrejemo za določeno temperaturo. Vrednost speci‑
fične toplote snovi je lahko v splošnem odvisna od temperature, pri plinih
pa je odvisna tudi od tega, ali plin segrevamo pri konstantnem tlaku ali pri
konstantni prostornini (primer 11.2). Enota za toplotno kapaciteto je J/K,
za specifično toploto pa J/(kg · K).

Zgoraj opisano obnašanje s pridom izrabljamo za merjene izmenjane
toplote. Spremembo temperature znamo namreč dobro izmeriti s termo‑
metrom in če poznamo toplotno kapaciteto, lahko brez težav določimo tudi
toploto, ki je povzročila izmerjeno spremembo temperature. Najprepro‑
stejša naprava za merjenje toplote je kalorimeter (primer 11.3). Kot bomo
videli v prihodnjih poglavjih, je količina izmenjane toplote zelo pomem‑
ben podatek za razumevanje biokemijskih reakcij, zato je kalorimeter eno
osnovnih orodij za raziskovanje termodinamskih procesov.

Izmenjevanje toplote z okolico ni nujno povezano le s spreminjanjem
temperature sistema, ampak je lahko povezano tudi s kemijskimi reakcija‑
mi ali pa s spremembami agregatnega stanja v sistemu (toplota se pri tem
porabi za pretrganje kemijskih vezi). Taljenje in izparevanje potekata pri
konstantni temperaturi, toplota, ki jo potrebujemo za spremembo agrega‑
tnega stanja snovi, pa je sorazmerna njeni masi:

Q = mqt oziroma Q = mqi , (11.7)

kjer jemmasa snovi, ki je spremenila agregatno stanje, qt in qi pa sta talilna
oz. izparilna toplota, tj. konstanti, ki povesta koliko energije je potrebno
taljenje oz. izparevanje 1 kg izbrane snovi (primer 11.4). Izparilna toplota
je tipično večja od talilne, saj se morajo pri izparevanju vezi med moleku‑
lami popolnoma pretrgati, za kar potrebujemo veliko toplote. Za vodo pri
normalnem tlaku npr. velja qt = 334 kJ/kg in qi = 2,3MJ/kg, kar pomeni,
da za izparevanje enega litra vode potrebujemo približno 8‑krat več ener‑
gije kot za taljenje enega kilograma ledu.
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Primer 11.2: specifična toplota idealnih plinov

Specifična toplota snovi pove, koliko toplote Q potrebujemo, da maso snovi m se‑
grejemo za ∆T . Večja kot je specifična toplota snovi, več toplote potrebujemo, da
dano maso segrejemo. Pri idealnih plinih je sprememba temperature preko enač‑
be 11.1 enostavno povezana s spremembo notranje energije, zato lahko specifično
toploto idealnih plinov določimo tako, da primerjamo enačbo za toploto (enačba
11.6) in vrednost izmenjane toplote po 1. zakonu termodinamike

Q = ∆Wn −A .

Če plin med dovajanjem toplote z okolico ne izmenja dela (A = 0), bo šla vsa
toplota v spremembo notranje energije in posledično v spremembo temperature.
Če pa se plin med dovajanjem toplote lahko razpenja, bo šlo nekaj toplote tudi za
delo, ki se ob tem opravi, zato bosta spremembi notranje energije in temperature
nekaj manjši. Specifična toplota pri dani prostornini (ko je A = 0) bo torej manjša
kot specifična toplota pri danem tlaku. Prvo bomo poimenovali cV drugo pa cp.
Račun naredimo najprej za enoatomne pline, ki imajo le tri prostostne stopnje
(Np = 3, slika 11.1). Število prostostnih stopenj vnesemo v enačbo za notranjo
energijo idealnih plinov (enačba 11.1) in razberemo zvezo med spremembo notra‑
nje energije in spremembo temperature enoatomnih plinov

∆Wn =
3

2
nR∆T =

3

2
m

R

M
∆T ,

pri čemer smo v zadnjem koraku uporabili zvezo n = m/M . Specifično toploto
pri dani prostornini bomo razbrali iz primerjave enačb, s katero smo specifično
toploto definirali (enačba 11.6) in količino izmenjane toplote po 1. zakonu

Q = mcV ∆T in Q = ∆Wn − 0 = m
3

2

R

M
∆T ,

pri čemer smo upoštevali, da je delo pri konstantni prostornini enako 0. Iz pri‑
merjave zgornjih enačb razberemo, da je specifična toplota enoatomnega plina pri
dani prostornini enaka

cv =
3

2

R

M

Pri segrevanju pri danem tlaku se plin tudi razpenja in opravlja delo, ki pa ga lahko
izračunamo s pomočjo plinske enačbe, v kateri upoštevamo, da je tlak konstanta
in je sprememba prostornine neposredno povezana s spremembo temperature:

A = −p∆V = −nR∆T = −m R

M
∆T

Ponovno primerjamo enačbo za specifično toploto (enačba 11.6) in količino izme‑
njane toplote po 1. zakonu

Q = mcp∆T in Q = ∆Wn −A =
3

2
m

R

M
∆T +m

R

M
∆T = m

5

2

R

M
∆T
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Vidimo, da je specifična toplota pri danem tlaku za enoatomni plin enaka

cp =
5

2

R

M

Če bi račun ponovili še za večatomne pline, bi ugotovili, da je pri vseh vrednost cp
ravno za R/M večja od vrednosti cV :

cp = cv +
R

M
,

vrednost cV pa je enaka številu prostostnih stopenj krat 1
2

R
M . Kasneje bomo videli,

da je za obnašanje plinov pomemben parameter tudi razmerje med specifičnima
toplotama, κ = cp/cV . Enostaven račun pokaže, da je ta parameter za za enoato‑
mne pline enak 1,66, za dvoatomne 1,4, za prostorske molekule pa 1,33.

Primer 11.3: kalorimeter
Kalorimeter je naprava, s katero merimo količino toplote, ki se sprosti ob izbranem
procesu, npr. pri eksotermni kemijski reakciji ali ob ohlajevanju izbranega telesa.
Na sliki je prikazano delovanje preprostega kalorimetra.

T

ΔT
Q

T

m

T1

T2

t
začetek reakcije

konec reakcije

izolacija

Preprost kalorimeter je dobro izolirana posoda, v kateri je znana količina vode. V
kalorimetru poženemo proces, ki ga raziskujemo, in hkrati merimo temperaturo
vode. Iz kalorimetra ne more uiti nič toplote, zato bo šla vsa pri procesu sproščena
toplota v segrevanje vode v kalorimetru. Količino sproščene toplote lahko torej
določimo neposredno iz enačbe

Q = mc∆T ,

saj poznamo maso vode (m) in njeno specifično toploto (c), spremembo tempera‑
ture (∆T = T2−T1) pa izmerimo. Ponavadi se ne moremo izogniti, da ne bi poleg
vode ogreli tudi notranjih sten kalorimetrske posode. V takem primeru moramo
zgornjo enačbo nadomestiti z enačbo Q = (mc + C)∆T , kjer smo s C označili
toplotno kapaciteto notranjih sten kalorimeterske posode.
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Primer 11.4: regulacija temperature s potenjem

Za človeka je izhlapevanje potu eden glavnih mehanizmov za regulacijo telesne
temperature (tu ljudje prekašamo dinozavre in druge plazilce, ki regulacije telesne
temperature nimajo in je njihova temperatura bolj ali manj prepuščena zunanjim
pogojem). Znan je podatek, da tekač z maso 60 kg med tekom s potenjem in izhla‑
pevanjem izgubi približno 0,5 l vode na uro. Ali znamo na osnovi tega podatka
določiti, najmanj kolikšna je njegova energijska poraba?
Celotne energijske porabe iz zgornjega podatka žal ne moremo določiti, saj del
energije tekač porabi kot delo pri premikanju, del toplote pa odda tudi npr. s
sevanjem. Iz zgornjega podatka lahko ocenimo le toploto, ki se je v eni uri od
telesa odvedla z izhlapevanjem:

Q = mqi = 0,5kg · 2,3MJ/kg = 1,15MJ .

To je približno toliko, kolikor v 3 h porabi 100 W žarnica.
Izračunajmo še, za koliko bi se v eni uri segrelo tekačevo telo, če pot ne bi izhlape‑
val, npr. če bi tekel po džungli, kjer zaradi velike vlažnosti zraka pot ne izhlapeva.
Če se zgoraj izračunana toplota ne bi odvedla z izhlapevanjem, bi se porabila za
segrevanje telesa. Ob predpostavki, da je specifična toplota telesa podobna speci‑
fični toploti vode, dobimo

∆T =
Q

mc
=

1,15MJ
60kg · 4200 J/kgK

= 4,6K = 4,6 °C .

Pri tem smo upoštevali, da je sprememba temperature v kelvinih enaka spremembi
temperature v stopinjah Celzija. Izračunano povišanje temperature je precejšnje,
zato bi v tropski klimi intenzivni tek torej težko preživeli.

11.5 Stiskanje in razpenjanje plinov
S stiskanjem oz. razpenjanjem plinov se v vsakdanjem življenju srečamo
vsaj pri napihovanju zračnic na kolesu in uporabi deodorantov v spreju, v
medicini pa npr. pri jeklenkah stisnjenih plinov, ki se uporabljajo za pre‑
dihavanje pacientov.

Obnašanje plinov pri stiskanju oz. razpenjanju je odvisno od izmenje‑
vanja toplote med plinom in okolico. Če lahko plin med stiskanjem iz‑
menjuje toploto z okolico, bo njegova temperatura vseskozi enaka tempe‑
raturi okolice, ki je ponavadi konstantna. Takim procesom pravimo tudi
izotermni procesi. Če pa je plin izoliran, ali pa je stiskanje tako hitro, da
ni časa za izmenjavo toplote, se bo zaradi dovedenega dela plinu poveča‑
la notranja energija in se bo zaradi tega segrel (analogno se bo pri takem
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A A

(T	= konst.)
izotermno stiskanje adiabatno stiskanje

(Q	= 0)

ΔW  = AnΔW  = 0, A = -Qn

Q

A B

Slika 11.4: Shematični prikaz dveh možnosti stiskanja idealnih plinov. A) Če je
plin v toplotnem stiku z okolico, bo energijo, pridobljeno z delom stiskanja, sproti
izgubljal v obliki toplote. Notranja energija in s tem temperatura se mu zaradi
stiskanja ne bosta spremenili. B) Če je plin izoliran ali pa ga stisnemo tako hitro,
da ni časa za izmenjevanje toplote, se mu bo ob stiskanju zaradi dovedenega dela
povečala notranja energija in se bo segrel. Tlak se mu bo zaradi tega zvečal bolj
kot pri izotermnem stiskanju. Hitro (adiabatno) je torej plin težje stisniti kot počasi
(izotermno).

razpenjanju temperatura plinu znižala). Procesom brez izmenjave toplote
z okolico (Q = 0) pravimo adiabatni procesi.

Ker se pri adiabatnem stiskanju poveča temperatura, se tlak plina bolj
poveča kot pri izotermnem. Če lahko pri izotermnem stiskanju spremem‑
bo tlaka izračunamo kar iz plinske enačbe (pV = konst.), pa je pri adiaba‑
tnem situacija bolj zapletena. Natančnejši izračun pokaže, da za adiabatne
spremembe velja zveza

pV κ = konst. , (11.8)

kjer je κ razmerje cp/cV (se pravi 1,66 za enoatomne pline, 1,4 za dvoato‑
mne linearne molekule in 1,33 za prostorske molekule, primer 11.2). Pri
izotermnih spremembah se torej ohranja produkt pV , pri adiabatnih pa
produkt pV κ. Ker je κ vedno večja od ena, se pri adiabatnih spremembah
tlak spreminja hitreje kot pri izotermnih spremembah.

Ker tlak plina pri adiabatnem stiskanju raste hitreje kot pri izotermnem,
plin adiabatno težje stisnemo kot izotermno. Z drugimi besedami, adiaba‑
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tna stisljivost plina je manjša kot izotermna. Natančnejši račun pokaže:

χT =
1

p
in χS =

1

κp
(11.9)

kjer smo s χT označili izotermno, s χS pa adiabatno stisljivost. Žlahtne
(enoatomne) pline je torej malce težje hitro stisniti kot večatomne pline, ki
imajo manjšo vrednost κ. Z našim znanjem termodinamike si znamo to la‑
stnost enostavno razložiti: pri enoatomnih plinih gre vse delo adiabatnega
stiskanja v translacijsko kinetično energijo, se pravi v gibanje, ki prispeva
k tlaku plina in tako nasprotuje našemu stiskanju. Pri večatomnih plinih
pa gre del dela v povečanje rotacijske kinetične energije, ki k tlaku ne pri‑
speva.

11.6 Entalpija
Izmenjevanje toplote je pomemben parameter za potek biokemijskih re‑
akcij. Nekatere reakcije za svoj potek potrebujejo toploto iz okolice, pri
drugih pa se toplota v okolico sprošča. Prve se imenujejo endotermne re‑
akcije (Q > 0), druge pa eksotermne (Q < 0). Ker pa so mnoge reakcije
zelo zapletene in lahko iz reaktantov do produktov vodi več različnih po‑
ti, se postavi vprašanje, ali je izmenjana toplota vedno enaka, ne glede na
to, po kateri poti se je reakcija izvršila. Poglejmo, ali nam lahko prvi zakon
termodinamike pomaga pri odgovoru na to vprašanje.

Biokemijske reakcije ponavadi potekajo pri danem tlaku, se pravi kar
pri zunanjem zračnem tlaku. Če so v reakcijah udeleženi tudi plini, bo
na spremembo notranje energije vplivalo tudi delo, ki se porabi pri raz‑
penjanju plinov. V splošnem se torej pri biokemijskih reakcijah z okolico
izmenjata tako delo kot toplota. Z malo računske akrobacije in uporabo pr‑
vega zakona termodinamike lahko vseeno ugotovimo, kaj se pri reakcijah
dogaja s toploto. V ta namen vpeljemo količino entalpija, ki jo označimo s
črko H in definiramo kot

H = Wn + pV (11.10)

Izračunajmo spremembo entalpije pri reakciji pri danem tlaku. Spremem‑
ba entalpije bo enaka vsoti spremembe notranje energije in spremembe
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produkta pV . Ker je p konstanten, je sprememba tega produkta kar enaka
p∆V . Sprememba entalpije bo tako

∆H = ∆Wn + p∆V . (11.11)

Sedaj moramo le še upoštevati prvi zakon termodinamike (enačba 11.4,
∆Wn = Q+A) ter izraz za delo (enačba 11.3,A = −p∆V ) in za spremembo
entalpije dobimo

∆H = Q (11.12)

Sprememba entalpije je pri danem tlaku torej kar enaka izmenjani toploti.
Termodinamske količine, kot so masa, prostornina, tlak, notranja ener‑

gija ipd. natanko in enolično določajo stanje sistema oz. lastnost sistema,
zato pravimo tudi, da so funkcije funkcija stanja sistema. Ta, na videz ba‑
nalna ugotovitev, je v praksi izjemno pomembna, saj nam zagotavlja, da
se bosta dva enaka termodinamska sistema v enakih pogojih obnašala po‑
vesem enako. Po drugi strani je za termodinamske količine, ki so funkcija
stanja, pri spremembah sistema pomembno le, kakšno je začetno in kakšno
je končno stanje sistema, pri čemer pa ni pomembna pot, po kateri je sis‑
tem prišel iz enega stanja v drugega. Ker je entalpija odvisna le od notranje
energije, tlaka in prostornine, je tudi entalpija funkcija stanja in imata zato
dva enaka sistema poleg enake notranje energije, enakega tlaka in enake
prostornine enako tudi entalpijo (slika 11.5A).

Sprememba entalpije in s tem po enačbi 11.11 tudi celotna izmenjana
toplota sta torej odvisni le od začetnega stanje in končnega stanja reakcije,
ne glede na to po kakšni poti je reakcija potekla. S tem je povezan Hessov
zakon, ki pravi, da je sprememba entalpije celotne reakcije vsota sprememb
entalpij posameznih korakov. Če npr. reakcija poteka iz stanja A do stanja
D preko vmesnih korakov B in C (A→ B → C → D), velja

∆HA→D = ∆HA→B +∆HB→C +∆HC→D . (11.13)

Celotna reakcija je endotermna, če je končna entalpija sistema višja od za‑
četne (∆H > 0) in eksotermna, če je končna entalpija nižja od začetne
(∆H < 0). Videli bomo, da nam Hessov zakon lahko pride zelo prav pri
obravnavanju zapletenejših reakcij.

Prostornina tekočin in trdnih snovi se med reakcijami ne spreminja ve‑
liko, zato je za njih sprememba entalpije kar približno enaka spremembi
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Slika 11.5: A) Stanje in s tem vse lastnosti termodinamskega sistema so enolično
določene z vrednostjo njegovih termodinamskih količin, ki so funkcije stanja sis‑
tema (Wn, H , m, V , c ...). Dva enaka sendviča, ki imata vse te količine enake, sta s
stališča termodinamike enaka in se bosta pod enakimi pogoji vedno obnašala ena‑
ko. Delo in toplota nista lastnosti sistemov, ampak sta povezani z njihovim spre‑
minjanjem. B) Tako prebava in presnova kot gorenje spremenita hrano iz istega
začetnega v isto končno stanje (vodno paro, ogljikov dioksid ter druge ostanke)
zato bo sprememba entalpije v obeh primerih enaka, ∆Hpresnova = ∆Hgorenje =
Hkonec−Hzačetek. Energijsko vrednost hrane lahko zaradi tega izmerimo kar s ka‑
lorimetrično meritvijo spremembe entalpije pri gorenju, tj. oddane toploten pri
gorenju.
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notranje energije, ∆H ≈ ∆Wn. Razlike med obema količinama pa nikakor
ne moremo zanemariti, če v reakcijah nastopajo plini.

Čeprav je entalpija na prvi pogled še bolj abstrakten pojem od energije,
pa ima veliko praktično vrednost. Spremembe notranje energije namreč
ni vedno enostavno izmeriti, saj za merjenje dela ni preproste univerzal‑
ne metode. Po drugi strani lahko spremembo entalpije brez težav izmeri‑
mo s kalorimetrom. Za mnoge spojine so nam spretni kemiki že izmerili
t. i. standardno tvorbeno entalpijo formacije, to je spremembo entalpije ob
formaciji enega mola spojine iz osnovnih spojin pri standardnih pogojih
(standardne vrednosti v kemiji pogosto označijo s simbolom ◦, standardno
tvorbeno entalpijo tako označimo z ∆H◦

t , standardno tvorbeno entalpijo
na mol snovi pa z ∆H◦

t ). Če za neko reakcijo poznamo standardne ental‑
pije formacije za reaktante in za produkte, lahko brez težav izračunamo
in predvidimo, ali je reakcija endo‑ ali eksotermna, ne da bi sploh izvedli
eksperiment (primer 11.5).

Ob tvorbi kemijskih vezi, se notranja energija in s tem tudi entalpija
zmanjšata, saj se ob vezavi dveh delcev zniža njuna interakcijska energija
(spomnimo se slike 4.3B). Tako sproščena energija se nato v okolico sprosti
v obliki termičnega gibanja (toplote). Po drugi strani se pri trganju ke‑
mijskih vezi entalpija poveča. Tvorba kemijskih vezi je eksotermni proces,
trganje pa endotermni proces.

Primer 11.5: uporaba entalpije v praksi

Poglejmo, ali znamo izračunati, koliko toplote se sprosti pri gorenju snovi, ne da bi
si morali ob tem opeči prste. Toploto izračunajmo za gorenje glukoze in se hkrati
spomnimo, da se enaka količina energije sprosti tudi med metabolizmom glukoze
v naših telesih, saj so reaktanti in produkti reakcije v obeh primerih enaki. Pri
gorenju glukoze poteka naslednja reakcija:

C6H12O6 + 6 O2→ 6 CO2 + 6 H2O
V tabelah najdemo naslednje podatke za standardno tvorbeno entalpijo enega mo‑
la naših reaktantov in produktov:

spojina C6H12O6 O2 CO2 H2O

∆H◦
t [kJ/mol] −1273,3 0 −393,5 −285,8

Standardna tvorbena entalpija kisika je nič, saj je kisik že osnovna spojina.
Spremembo entalpije pri gorenju dobimo, če izračunamo razliko med stan‑
dardno tvorbeno entalpijo produktov in reaktantov, pri čemer upoštevamo,
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da v reakciji nastopa šest molov ogljikovega dioksida in šest molov vode:

produkti: −6 · 393,5kJ− 6 · 285,8kJ = −4075,8kJ

reaktanti: −1273,3kJ− 6 · 0kJ = −1273,3kJ

razlika: −2802,5kJ
Pri gorenju enega mola glukoze (tj. približno 180 g) pri standardnih pogojih se
torej sprosti približno 2803kJ toplote, kar zadošča za segretje 10 litrov vode za
približno 67K! Do enake številke bi seveda prišli tudi, če bi oddano toploto pri
standardnih pogojih izmerili v kalorimetru. V praksi pri gorenju produkti ne na‑
stajajo pri standardnih pogojih ampak končajo pri precej višji temperaturi, pa tudi
voda je na koncu v plinastem in ne v tekočem stanju. V praksi bi torej pri gorenju
glukoze dobili malo manj toplote, saj se je nekaj porabi pretvarjanje vode v plina‑
sto stanje. Primerjava standardnih tvorbenih entalpij s termično energijo (primer
11.1) nam pove, da se pri tvorjenju kovalentnih vezi sprosti res veliko energije.

Zgornji razmisleki so nepogrešljiv del razumevanja fizioloških in bio‑
kemijskih procesov v telesu. Uporabimo jih npr. pri določanju kalorične
vrednosti hrane. Ko hrano pojemo, jo telo razgradi in uporabi s pomočjo
zapletenih biokemijskih mehanizmov prebave in presnove. Pri določanju
njene energijske vrednosti na srečo ni potrebno slediti vsem tem procesom,
ampak le primerjati začetno in končno stanje sistema (slika 11.5B). Vemo,
da se hrana s presnovo spremeni v glavnem v CO2, vodo in pa ostanke
ostalih snovi. Če bi hrano zažgali, bi prišli do praktično enakega končnega
stanja. Energijsko vrednost hrane lahko torej enostavno določimo tako, da
jo zažgemo v kalorimetru in izmerimo, koliko toplote se je pri tem sprosti‑
lo. Pri tem moramo le upoštevati, da so v hrani tudi snovi, ki jih naše telo ne
more prebaviti, pri gorenju pa vseeno oddajajo toploto (t. i. vlaknine, npr.
celuloza). V praksi so tako v kalorimetru izmerili le povprečne kalorične
vrednosti glavnih prebavljivih snovi (ogljikovi hidrati, proteini, maščobe
ipd.), energijsko vrednost hrane pa določijo preko merjenja vsebnost teh
snovi v določeni hrani (primer 11.6).

Na koncu opozorimo še na majhno past, v katero se pogosto ujamemo
med razmišljanjem o energijski vrednosti hrane. Pogosto se nam namreč
zdi, da je energija v hrani »shranjena« v kemijskih vezeh hranil (in da se tja
s pomočjo fotosinteze »spravi« energija s Sonca). V primeru 11.5 pa smo
spoznali, da je resnica ravno obratna – kemijske vezi predstavljajo »nega‑
tivno« energijo, saj moramo za pretrganje vezi energijo vložiti (trganje vezi
je endotermna reakcija). Odgovor na ta navidezen paradoks je enostaven:
energijo iz hrane seveda dobimo šele, ko se atomi hrane vežejo s kisikom
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in tako ustvarjajo še več oz. močnejše nove vezi!

Primer 11.6: kalorije

Kalorija je stara enota za energijo, ki so jo izbrali tako, da 1 cal ustreza toploti, ki 1g
vode segreje za 1 °C. S pomočjo našega znanja kalorimetrije (enačba 11.6) znamo
takoj izračunati povezavo med kalorijami in jouli: 1 cal = 4,184 J. Iz zgodovin‑
skih razlogov se kalorije še vedno pogosto uporablja, včasih celo kot sinonim za
energijo (beseda kalorija izvira iz latinske besede za toploto). Pri nas kalorije naj‑
večkrat srečamo v povezavi z energijsko vrednostjo hrane, pri tem pa moramo biti
pozorni, saj se (predvsem v anglosaški literaturi) za kilokalorijo uporablja kalorija
z veliko začetnico 1Cal = 1 kcal.
Tabela prikazuje kalorično vrednost
glavnih sestavin hrane (povzeto po
[3]). Izmerimo jo kot toploto, ki se pri
zažigu sprosti v kalorimetru in torej
opisuje spremembo entalpije pri reak‑
ciji hrana+O2→ CO2+H2O+ostanki.
V praksi vsake hrane ni potrebno za‑
žgati, ampak ji z biokemijsko analizo
določimo vsebnost osnovnih sestavin,
ki jih lahko prebavimo, ter s pomočjo
tabele izračunamo skupno energijsko
vrednost. Vlaknin v hrani ne more‑
mo prebaviti, zato ne štejejo k energij‑
ski vrednosti hrane, čeprav bi pri gore‑
nju seveda tudi oddale toploto. Čeprav
nimajo energijske vrednosti, so vlakni‑
ne za zdravo prehrano seveda tudi zelo
pomembne.

snov kJ/g kcal/g

ogljikovi hidrati 17 4

proteini 17 4

etanol 29 7

maščobe 37 9

Čeprav je kalorična vrednost eden osnovnih kvantitativnih parametrov hrane, pa
se pri dietah nanjo ne moremo preveč zanašati. Delež prebavljene hrane je namreč
zelo odvisen od situacije in človeka, zato s štetjem kalorij ne dobimo nujno natanč‑
ne informacije o količini energije, ki jo dobimo s hrano. Za povprečnega človeka je
torej namesto znanstvenega preštevanja zaužitih kalorije bolj pomembno, da sle‑
di nasvetom babic: jesti je treba raznoliko hrano v zmernih količinah in se veliko
gibati! Mimogrede: prvi strastni preštevalec »kalorij« je bil Santorio Santorio, ki
smo ga srečali že pri prvih termometrih. Santorio naj bi več kot trideset let skrbno
tehtal vse kaj je zaužil in izločil, s čimer je naredil prve korake proti razumevanju
človeškega metabolizma.

143



Poglavje 12

Entropija in drugi zakon
termodinamike

Nekatere stvari se v naravi spontano ne zgodijo, pa čeprav ne kršijo prvega
zakona termodinamike. Skakanje košarkarske žoge po tleh s časom vedno
zamre, mirujoča žoga pa iz tal nikoli ne posesa toplote in začne skakati, pa
čeprav bi se lahko celotna energija tudi pri tem procesu ohranjala. Očitno
se nekatere pretvorbe energije lahko zgodijo spontano, druge pa ne.

Vprašanje spontanosti procesov je pravzaprav eno osrednjih vprašanj
znanosti. Od nekdaj so se fiziki, kemiki, biologi, inženirji, pa tudi filozo‑
fi spraševali, zakaj se nekatere stvari zgodijo spontano, druge pa ne? Kaj
določa smer časa? Šele v drugi polovici 19. stoletja je postalo jasno, da so
ta vprašanja povezana s količino, ki jo danes imenujemo entropija, ter z njo
povezano temeljno zakonitostjo narave, ki ji danes rečemo drugi zakon ter‑
modinamike. Zaradi svojega nenavadnega imena in abstraktne definicije en‑
tropija še danes marsikomu buri domišljijo. Mi žal ne bomo mogli raziskati
vseh njenih skrivnosti, vseeno pa si bomo lahko tudi s svojim znanjem fi‑
zike pridobili nekaj osnovne intuicije o smeri poteka spontanih sprememb
v naravi.

12.1 Spontanost procesov in preprost pogled na
entropijo

Za začetek našega spoznavanja z entropijo si poglejmo preprost miselni
poskus. Plin naj bo na začetku stisnjen v kot izolirane posode, nato pa
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ga prepustimo samega sebi. Vsi vemo, da se v tem primeru plin s časo‑
ma spontano razširi po vsej razpoložljivi prostornini posode (slika 12.1).
Obraten proces se spontano ne zgodi nikoli, pa čeprav sta s stališča energi‑
je procesa v obe smeri ekvivalentna (v obeh primerih ni nobene izmenjave
energije z okolico).

S spontanostjo procesov je povezana njihova obrnljivost – neobrnljivi
procesi lahko spontano potekajo le v eni smeri, obrnljivi procesi pa lahko
spontano potekajo v obeh smereh. Razširjanje plina v prazen prostor je
očitno neobrnljivo. Če smo zelo natančni, ugotovimo, da je pravzaprav
večina naravnih procesov bolj ali manj neobrnljivih, obrnljivi pa so le zelo
idealizirani procesi. Približek obrnljivih procesov so procesi, pri katerih
lahko notranje in zunanje trenje zanemarimo, ali pa dovolj počasni procesi,
ki potekajo preko samih ravnovesnih stanj, npr. počasno segrevanje ali
ohlajevanje sistema.

spontano

nespontano

Slika 12.1: Spontani in nespontani procesi. Če je plin na začetku stisnjen v kot
izolirane posode in ga nato prepustimo samega sebi, se bo spontano razširil po
vsem prostoru. Obraten proces se spontano ne zgodi nikoli, saj se plin sam od
sebe nikoli ne »pospravi« v kot posode. Pravimo tudi, da je širjenje plina v prazen
prostor neobrnljiv proces. Seveda pa lahko plin nazaj v kot posode pospravimo
nespontano, z opravljanjem dela od zunaj, npr. da ga v kot stisnemo z batom.

Spontanosti procesov ni mogoče razložiti zgolj na osnovi Newtonove fi‑
zike in prvega zakona termodinamike, saj Newtonove enačbe enako dobro
delujejo tudi, če v enačbah obrnemo smer časa. S stališča drugega New‑
tonovega zakona bi lahko proces s slike 12.1 enako dobro potekal v obe
strani. Po dolgih letih raziskovanja je šele proti koncu 19. stoletja postalo
jasno, da je za opisovanje spontanosti naravnih procesov ključna količina,
ki jo danes imenujemo entropija in je ena od lastnosti termodinamskih sis‑
temov, podobno kot so to masa, gostota, notranja energija in entalpija.

Natančna formulacija entropije ni enostavna (znamenita Boltzmanova
formulacija entropije je predstavljena v primeru 12.1), na srečo pa obstaja
tudi preprost pogled na entropijo, ki bo za naše potrebe pogosto povsem
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zadostoval. Ta pravi, da je entropija merilo za »neurejenost« sistema. En‑
tropija sistema je tem večja, čim bolj je sistem neurejen. Čeprav »neureje‑
nost sistema« v splošnem ni dobro definiran pojem, nam bo pri razumeva‑
nju entropije v veliko pomoč intuicija. V našem preprostem primeru s slike
12.1 je plin v posodi bolj neurejen, če se lahko molekule svobodno gibljejo
po vsem prostoru, kot če je »pospravljen« na eno stran posode. Podobno
si lahko intuitivno sliko entropije ustvarimo tudi za druge pogoste fiziolo‑
ške in biokemijske procese. Slika 12.2 prikazuje nekaj tipičnih sprememb,
pri katerih nam analogija z neurejenostjo pomaga pri ocenjevanju entropije
sistema.

A B C D

Slika 12.2: Nekaj pogostih primerov sprememb, pri katerih se poveča entropija
oz. neurejenost sistema. A) Entropija se poveča, če povečamo temperaturo in so
molekule podvržene večjemu termičnemu gibanju in bolj divje skačejo sem ter tja.
B) Entropija sistema se poveča, če povečamo prostor, po katerem se lahko gibljejo
molekule, saj so lahko tako razmetane na več različnih načinov. C) Entropija se
ponavadi poveča, ko večje molekule razpadejo na manjše, saj lahko več manjših
delcev med seboj zmešamo na več različnih načinov. E) Pri velikih makromoleku‑
lah je entropija večja, če se lahko neurejeno zvijajo sem ter tja, manjša pa če imajo
natančno določeno obliko. Dolga neurejena polipeptidna veriga, ki se termično
zvija, ima večjo entropijo kot protein, ki se je zvil v svojo stabilno terciarno struk‑
turo.
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Primer 12.1: Mikroskopski pogled na entropijo

Zanimiv pogled na spontanost procesov, ravnovesje in entropijo se nam odpre,
če raziščemo, kaj se z našim idealiziranim sistemom, plinom v posodi (slika 12.1),
dogaja na molekularnem nivoju.
Molekule plina v posodi zaradi svojega termičnega gibanja tavajo naokoli in če‑
prav so na začetku vse v enem kotu, slej ko prej zapolnijo ves dostopni prostor.
Ker po prostoru tavajo povsem naključno, v dolgem času, ko sistem doseže rav‑
novesje, za vsako molekulo velja, da je v povprečju pol časa na eni strani posode,
pol časa pa na drugi strani. Če bi imeli v posodi le eno molekulo, bi bila desna
polovica posode polovico časa prazna, polovico časa pa polna.
Zanimivo postane, ko v posodo dodajamo več molekul. Spodnja slika prikazuje
vse možne mikroskopske razporeditve molekul plina pri različnih številih molekul
v posodi (od N = 1 do N = 4, molekule označujemo z a, b, c in d).
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V idealnem plinu se vsaka molekula giblje povsem naključno in neodvisno od osta‑
lih, zato so vse mikroskopske razporeditve enako verjetne. Pri dveh molekulah v
posodi so možne razporeditve štiri, desna stran posode pa je popolnoma prazna
v 1/4 vseh možnih razporeditev oz. eno četrtino časa. Pri N = 3 je desna stran
posode prazna v 1/8, pri N = 4 pa le še v 1/16 vseh možnih razporeditev. Vidi‑
mo, da so v sistemu z N molekulami vse molekule hkrati na na levi strani posode
v povprečju 1/2N časa. Ker je N v termodinamskih sistemih zelo velik, je jasno,
da se v praksi molekule ne bodo nikoli vse hkrati znašle na levi strani posode (za
vajo lahko izračunate delež časa, ko so v sistemu s 1000 molekulami vse molekule
hkrati na levi strani sistema? Koliko sekund bi bile vse hkrati na levi strani, če bi
jih opazovali vso starost vesolja, ki je približno 4 · 1017 s?).
Pogled na različne mikroskopske razporeditve molekul po prostoru nam tudi raz‑
krije, da je največ razporeditev ravno takih, pri katerih je polovica molekul na eni,
polovica pa na drugi strani posode (pri velikem številu molekul je vseh drugih
stanj zanemarljivo malo). Ravnovesno stanje je torej ravno tisto makroskopsko
stanje sistema, ki je najverjetnejše! Čeprav se mikroskopska slika sistema nepre‑
stano spreminja, saj posamezne molekule potujejo sem ter tja, bo sistem večino
časa preživel v mikroskopskih stanjih, ki ustrezajo ravnovesnemu makroskopske‑
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mu stanju, se pravi stanju s polovico molekul na eni in polovico molekul na drugi
strani. Če bi bili zelo natančni, bi sicer opazili, da je tudi v ravnovesju vsake toliko
kakšna molekula več na eni kot na drugi strani posode, a so ta nihanja (fluktua‑
cije) okoli ravnovesja v velikih sistemih zelo majhna (pokazati je mogoče, da so
relativna povprečna odstopanja od ravnovesja obratno sorazmerna kvadratnemu
korenu števila delcev v sistemu, 1/

√
N ).

Povezavo med verjetnostjo nekega makroskopskega stanja in ravnovesjem siste‑
ma je v drugi polovici 19. stoletja odkril Ludwig Boltzmann. Ugotovil je tudi, da
je možno vpeljati količino, ki je dobra mera za zgoraj opisane lastnosti termodi‑
namskih sistemov. Ta količina je ravno entropija in jo po Boltzmannu zapišemo z
znamenito enačbo:

S = kB lnΩ (12.1)

kjer je s S označena entropija sistema, kB je Boltzmannova konstanta, Ω pa je šte‑
vilo različnih mikroskopskih stanj, ki ustrezajo danemu makroskopskemu stanju
sistema.
Boltzmannova enačba za entropijo (enačba 12.1) je sicer elegantna, a si je količino
Ω težko predstavljati, kaj šele z njo računati. Enačbo smo napisali zgolj zato, ker je
ena najbolj enostavnih formulacij entropije, v praksi pa z njo ne bomo računali. Po
drugi strani lahko skozi Boltzmannovo enačbo vidimo eno pomembnejših lastnosti
entropije: entropija je ena od lastnosti makroskopskega sistema. Dva sistema, ki
sta z makroskopskega stališča enaka, imata torej tudi enako entropijo. Če se sistem
spreminja, je sprememba entropije odvisna le od njegovega začetnega in končnega
stanja, ne pa od poti, po kateri se je sistem spremenil.

12.2 Izmenjevanje toplote in sprememba entro‑
pije

Entropija je torej tesno povezana z neurejenostjo sistema. Pojem neureje‑
nosti smo prvič srečali pri vpeljavi toplote, ki smo jo opisali kot neurejeno
prehajanje notranje energije med sistemi. Ugibamo lahko, da se sistemu
entropija poveča, če mu dovedemo toploto in s tem povečamo neurejeno
termično gibanje v sistemu. Natančnejša analiza pokaže, da je pri obrnlji‑
vih procesih sprememba entropije sistema enaka razmerju med dovedeno
toploto in temperaturo, pri kateri je bila toplota dovedena:

∆S =
Q

T
(velja za obrnljive procese) (12.2)
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Intuitivno lahko razumemo razlog, da je v zgornji enačbi temperatura v
imenovalcu: če je temperatura sistema nizka, mu lahko že majhna količi‑
na toplote precej poveča neurejenost, če pa je temperatura visoka, je ne‑
urejenost že tako ali tako velika in jo dodatna toplota le še malo poveča.
Opozorimo naj še, da zgornja enačba velja le, če je med dovajanjem toplote
temperatura sistema konstantna. Če se temperatura spreminja, moramo
spremembo entropije izračunati s pomočjo integrala ∆S =

∫ dQ
T

.
Spremembo entropije lahko s pomočjo zgornje enačbe računamo le za

obrnljive procese. To so idealizirani procesi, ki potekajo počasi in le preko
ravnovesnih stanj. Povedali smo že, da naravni procesi iz nekega začetne‑
ga v neko končno stanje ponavadi potekajo po neobrnljivih poteh. Zgornjo
enačbo pa lahko uporabimo tudi v takih primerih, le zamisliti si moramo
počasen obrnljiv proces, ki vodi iz istega začetnega v isto končno stanje in
vzdolž njega po zgornji enačbi izračunati spremembo entropije (slika 12.3).
Ker je entropija odvisna le od stanja sistema in ne od poti, je sprememba
entropije po obrnljivi poti natanko enaka spremembi po neobrnljivi poti.

začetno
stanje

končno
stanje

naravna, 
ponavadi neobrnljiva pot

idealizirana, obrnljiva pot

ΔS = ?

ΔS = Q/T

Slika 12.3: Sprememba entropije je odvisna le od začetnega in končnega stanja
sistema, ne pa od poti, po kateri se je sistem spreminjal. Veliko naravnih procesov
je neobrnljivih, zato za njih spremembe entropije ne moremo izračunati neposre‑
dno po enačbi 12.2. Spremembo entropije za take procese izračunamo tako, da
si zamislimo idealiziran obrnljiv proces, ki pripelje iz istega začetnega do istega
končnega stanja in spremembo entropije izračunamo vzdolž te poti, po enačbi
12.2.

Kot primer si poglejmo razpenjanje plina v prazen prostor s slike 12.1.
Proces je spontan in neobrnljiv, saj poteka preko očitno neravnovesnih
stanj. Za izračun spremembe entropije pri tem procesu torej enačba 12.2
ni neposredno uporabna. Če bi jo uporabili, bi dobili napačen rezultat in
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sicer, da je sprememba entropije pri tem procesu enaka nič, saj je sistem
izoliran in ne izmenja nobene toplote z okolico, Q = 0. Po drugi strani si
lahko zamislimo obrnljiv proces, ki vodi iz istega začetnega v isto končno
stanje. V našem primeru je tak proces kar počasno izotermno razpenjanje
plina, za katerega pa je enačba 12.1 neposredno uporabna. Pri izotermnem
razpenjanju plina le ta prejme toliko toplote, kot odda dela (slika 11.4). Ker
znamo delo izračunati (A = −

∫
pdV ), lahko izrazimo tudi toploto:

Q = −A =

∫ V2

V1

pdV = NkBT

∫ V2

V1

dV
V

= NkBT ln
V2
V1

, (12.3)

kjer sta V1 in V2 začetna in končna prostornina, N je število molekul pli‑
na, kB pa je Boltzmannova konstanta. Pri računu smo morali uporabiti
integral, saj se tlak med izotermnim razpenjanjem spreminja, v drugem
koraku pa smo si pomagali tudi tako, da smo tlak izrazili s plinsko enačbo,
p = NkBT/V . Sprememba entropije pri razpenjanju idealnega plina pri
konstantni temperaturi bo torej

∆S =
Q

T
= NkB ln

V2
V1

= −NkB ln
p2
p1
, (12.4)

kjer smo v zadnjem enačaju uporabili plinsko enačbo pri stalni temperaturi
(V2/V1 = (p2/p1)

−1), negativno potenco pa smo dali ven iz logaritma, kjer
je postala minus. Ker je končna prostornina večja od začetne (V2 > V1) in je
logaritem njunega razmerja pozitiven (lnV2/V1 > 0), se bo po enačbi 12.4
pri izotermnem razpenjanju v prostor entropija povečala. Rezultat računa
je torej v skladu z razmislekom s slike 12.2B.

Sprememba entropije ni odvisna od poti, ampak le od začetnega in
končnega stanja sistema, zato je sprememba entropije pri razpenjanju v
prazen prostor, ki je prikazano na sliki 12.1, enaka spremembi entropije
pri izotermnem razpenjanju, ki smo jo izračunali z enačbo 12.4.

Računanje zaključimo z zanimivo ugotovitvijo. Pri spontanem razpe‑
njanju plina v prazen prostor je sistem sicer izoliran (Q = 0), a se je en‑
tropija vseeno povečala. Izkaže se, da se entropija pri spontanih procesih
vedno poveča za več, kot bi napovedala enačba 12.2. Za vse neobrnljive
(spontane) procese lahko tako v splošnem zapišemo:

∆S >
Q

T
(velja za neobrnljive procese) (12.5)
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S to formulo si pri računanju entropije za neobrnljive procese sicer ne mo‑
remo pomagati, saj je v njej neenačaj. V njej pa se že kaže drugi zakon
termodinamike.

12.3 Drugi zakon termodinamike

Čeprav smo si entropijo do sedaj ogledovali le na zelo preprostih sistemih,
opisane lastnosti veljajo pri vseh, še tako zapletenih makroskopskih sis‑
temih. Prišli smo dovolj daleč, da lahko z besedami zapišemo znameniti
drugi zakon termodinamike:

Od okolice izoliran sistem se lahko spontano spreminja le tako,
da se mu entropija povečuje. Ko entropija doseže največjo možno
vrednost, sistem doseže ravnovesje.

Grafično ponazoritev drugega zakona termodinamike prikazuje slika 12.4.

S

stanje sistema

ravnovesje

secorp natnops

Slika 12.4: Drugi zakon termodinamike
pravi, da pri spontanih procesih v izoli‑
ranih sistemih entropija le narašča. Sis‑
tem doseže ravnovesje, ko entropija do‑
seže največjo možno vrednost.

Poudarimo naj, da drugi zakon ne pravi, da se entropija sistemu ne
more zmanjšati. Zakon velja le za povsem izolirane sisteme. Če sistem ni
izoliran, mu lahko entropijo zmanjšamo, če iz njega odvedemo toploto oz.
ga ohladimo (Q < 0, enačba 12.2). Preprost primer računanja entropije je
prikazan v primeru 12.2.

Zgornja oblika drugega zakona je le ena od njegovih možnih interpre‑
tacij. Druga možna formulacija npr. pravi, da se lahko entropija vesolja le
povečuje (vesolje je »sistem«, zato je ta formulacija v skladu zgornjo). Po‑
kazati je tudi mogoče, da iz drugega zakona sledi, da termične energije oz.
toplote ne moremo v celoti pretvoriti v uporabno delo.

V tem poglavju smo vzpostavili prvi stik z entropijo in drugim zako‑
nom termodinamike, njuno uporabnost pri razumevanju biokemijskih in
fizioloških procesov pa bomo spoznali v naslednjem poglavju.
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Primer 12.2: sprememba entropije pri izmenjevanju toplote

Za vajo si na preprostem primeru poglejmo, kako izračunati spremembe entropije
sistema pri izmenjevanju toplote, npr., ko v izolirani posodi zmešamo 100g ledu
s temperaturo 0 °C s 100g vode s temperaturo 79,5 °C (količine smo izbrali tako,
da se bo pri tem procesu stopil ravno ves led, končna temperatura v posodi pa bo
0 °C).

led (0°C)

voda
T₁=79,5 °C

voda
T₂=0 °C

Za začetek si moramo opisati, kaj se med procesom dogaja: toplota bo prehajala
iz vroče vode v led, voda se bo pri tem ohlajala, led pa se bo talil. V ravnovesju ob
koncu procesa bo povsod v posodi enaka temperatura.
Najprej poglejmo, kaj se med procesom dogaja s toploto. Posoda izolirana, zato se
z okolico ne izmenjala nič toplote. Toplota, ki jo prejme led, je zato po absolutni
vrednosti enaka toploti, ki jo odda vroča voda:

Qled = −Qvoda

Toplota, ki jo prejme led, da se stali, je

Qled = mledqt = 0,1kg · 334kJ/kg = 33,4kJ ,

toplota, ki jo odda vroča voda, da se ohladi na 0 °C, pa je

Qvoda = mvodac∆T =
0,1kg 4,2kJ

kg K
−79,5K

= −33,4kJ ,

pri čemer smo upoštevali, da je sprememba temperature vode negativna in je zato
tudi toplota negativna. Vidimo, da sta obe toploti po absolutni vrednosti enaki in
je zato končna ravnovesna temperatura mešanice zares 0 °C (natanko vsa toplota,
ki jo je oddala voda, se je porabila za taljenje ledu).
Sedaj si poglejmo še, kaj se med procesom dogaja z entropijo. Posoda je izolirana
in z okolico ne izmenjuje toplote (Q = 0), proces pa je neobrnljiv (voda z 0 °C se
nikoli spontano ne razdeli v led in vročo vodo), zato za celotno entropijo v posodi
velja (enačba 12.5):

∆S >
Q

T
= 0 .

Skladno z drugim zakonom termodinamike se pri spontanem procesu v izolira‑
nem sistemu entropija poveča, a s pomočjo neenačbe žal ne moremo izračunati,
kolikšno je to povečanje. Pomagamo si tako, da najdemo obrnljivo pot, ki vodi iz
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začetnega v končno stanje. V našem primeru je najpreprostejša obrnljiva pot na‑
slednja: led počasi stalimo, vročo vodo pa počasi ohladimo na 0 °C. Oba procesa
sta obrnljiva, saj obratna procesa (počasno zmrzovanje in počasno segrevanje vo‑
de) potekata preko enakih stanj in sta prav tako mogoča. Končno stanje je enako
kot v našem primeru, tj. dobimo skupno 200 g vode pri 0 °C. Celotna sprememba
entropije v posodi bo torej enaka vsoti spremembe entropije ledu pri počasnem
taljenju ter spremembe entropije pri počasnem ohlajanju vroče vode:

∆S = ∆Sled +∆Svoda .

Počasno obrnljivo taljenje ledu poteka pri stalni temperaturi, zato lahko spremem‑
bo entropije pri tem procesu izračunamo tako, da v enačbi 12.2 vstavimo toploto,
ki jo je led sprejel

∆Sled =
Qled

T
=

33,4kJ
273K

= 122 J/K .

Led je toploto sprejel, zato se mu je entropija seveda povečala.
Entropijo vode je težje izračunati, saj se temperatura vode med njenim ohlajanjem
neprestano spreminja zato ne moremo uporabiti enačbe 12.2, ampak si moramo
pomagati z integralom (sešteti moramo majhne deleže toplote dQvoda, ki jih je voda
oddala pri različnih temperaturah od T1 = 352,5K do T2 = 273K):

∆Svoda =

∫ T2

T1

dQvoda

T
=

∫ T2

T1

mvodacdT
T

= mvodac (lnT2 − lnT1) =

= mvodac ln
T2

T1
= 0,1kg · 4200 J/kgK · ln 273K

352,5K
= −107 J/K .

pri čemer smo v drugem koraku zgornjega računa upoštevali, da je majhen delež
toplote, ki jo voda odda pri določeni temperaturi, sorazmeren majhni spremembi
temperature: dQvoda = mvodacdT . Rezultat zgornjega računa se sklada z našo
predstavo o entropiji: voda je toploto oddala in zato se ji je entropija zmanjšala.
Celotna sprememba entropije v posodi je torej:

∆S = ∆Sled +∆Svoda = 122 J/K− 107 J/K = 15 J/K .

Čeprav je voda oddala toliko toplote, kot je je led sprejel, je voda toploto oddajala
pri višji temperaturi, kot jo je led sprejemal, zato se ji je entropija zmanjšala manj,
kot se je ledu povečala. Celotno povečanje entropije v posodi je zato v skladu z
drugim zakonom termodinamike pozitivno, saj je v posodi potekel spontan proces.
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Poglavje 13

Osnove termodinamike
fizioloških procesov

Drugi zakon termodinamike nam lahko neposredno razloži in napove ob‑
našanje izoliranih sistemov, tj., kako se bodo spreminjali (proti večji en‑
tropiji) in kdaj bodo dosegli ravnovesje (ko bo entropija dosegla največjo
možno vrednost). A živa bitja niti približno nismo izolirani sistemi, prav
nasprotno, ponavadi živimo v toplotnem stiku z okolico pri dani tempe‑
raturi. Kako nam lahko torej drugi zakon termodinamike pomaga pri ra‑
zumevanju procesov v naših fizioloških pogojih, se pravi v neizoliranih
sistemih pri danem tlaku in temperaturi?

V zadnjem poglavju termodinamike bomo počasi začeli graditi most
med fiziko in biologijo ter končno spoznali, kako lahko prvi in drugi zakon
termodinamike združimo in uporabimo za razumevanje biokemijskih in
fizioloških procesov. V ta namen bomo morali najprej vpeljati novi količini
prosto entalpijo in z njo povezan kemijski potencial. Nato si bomo s pomočjo
preprostih primerov pridobili osnovno intuicijo o novih pojmih ter jih na
koncu uporabili za razlago nekaterih fiziološko pomembnih pojavov, kot
so osmozni tlak, hlapenje vode in raztapljanje plinov.

13.1 Prosta entalpija in ravnovesje pri fizioloških
pogojih

Vprašanje, kako si z zakoni termodinamike pomagati pri fizioloških pogo‑
jih, tj. pri danem tlaku in dani temperaturi, je v drugi polovici 19. stoletja
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razvozlal ameriški znanstvenik Josiah Willard Gibbs. Ugotovil je, da je za
obnašanje takih sistemov merodajna količina, ki povezuje entalpijo in en‑
tropijo ter s tem upošteva tako težnjo sistemov po čim manjši potencialni
energiji kot tudi težnjo po čim večji entropiji. To količino imenujemo prosta
entalpija1 in jo definiramo kot

G = H − TS , (13.1)

kjer je G prosta entalpija sistema, H je entalpija sistema, S entropija sis‑
tema, T pa temperatura sistema. Ker so H , T in S funkcije stanja sistema,
enako velja tudi za G (z drugimi besedami: sprememba proste entalpije
pri nekem procesu je odvisna le od začetnega in končnega stanja ne pa od
poti, po kateri smo prišli iz enega v drugega).

Uporabnost proste entalpije se nam razjasni, ko izračunamo njeno spre‑
membo za spontane procese. Pri danem tlaku in temperaturi, je spremem‑
ba proste entalpije odvisna le od spremembe entalpije in entropije:

∆G = ∆H − T∆S . (13.2)

Ker je sprememba entalpije enaka toploti, ∆H = Q, hkrati pa za spontane
procese velja ∆S > Q/T (enačba 12.5), iz enačbe 13.2 sledi, da se lahko pri
spontanih procesih prosta entalpija le manjša,

∆G < 0 , (13.3)

Če je nek sistem pri danih temperaturi in tlaku prepuščen sam sebi, bodo
lahko v njem spontano stekli le taki procesi, pri katerih se bo prosta en‑
talpija sistema zmanjšala. Ko se prosta entalpija ne bo več mogla manjšati,
bo sistem dosegel ravnovesje (slika 13.1A). Pri delitvi reakcij glede na spre‑
membo entalpije smo srečali endo‑ in eksotermne reakcije, analogno pa pri
prosti entalpiji govorimo o endergonskih (∆G > 0) in eksergonskih (∆G < 0)
reakcijah.

Pazljivi bralec že razmišlja o osrednjem vprašanju biokemije: če lahko
spontano stečejo le eksergonski procesi, kako se lahko potem sploh zgodi‑
jo tudi endergonski procesi? Odgovor na to vprašanje nas pripelje v samo
v osrčje skrivnosti življenja: vsa zanimiva raznolikost narave okoli nas je

1V tuji literaturi prosto entalpijo včasih imenujejo tudi Gibbs energy ali kar free energy.
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A B

G

stanje sistema

ravnovesje

spontan proces ΔG >01

ΔG <02
ADP

ATP

ATP

Slika 13.1: A) Prosta entalpija (G) je količina, ki usmerja fiziološke in biokemijske
procese pri dani temperaturi in danem tlaku. Spontano lahko potečejo le procesi,
pri katerih se prosta entalpija sistema manjša (t. i. eksergonski procesi, ∆G < 0),
ne pa tudi procesi pri katerih se prosta entalpija veča (t. i. endergonski procesi,
∆G > 0). Procesi v sistemu potekajo toliko časa, dokler prosta entalpija ne dose‑
že najmanjše možne vrednosti. Takrat sistem doseže ravnovesje. B) Endergonski
procesi lahko stečejo le, če so sklopljeni z zelo eksergonskim procesom in sicer ta‑
ko, da je celotna sprememba proste entalpije sistema negativna (∆G1+∆G2 < 0).
Hidroliza ATP je tipičen eksergonski proces, ki poganja endergonske procese v
živih bitjih.

namreč mogoča, ker je evolucija iznašla načine, kako endergonske procese
sklopiti z zelo eksergonskimi. Celotna sprememba proste entalpije sklo‑
pljenega procesa je na koncu tako negativna, zaradi česar je proces sponta‑
no izvedljiv po vseh strogih zakonih termodinamike. Ena najosnovnejših
takih sklopitev v biokemiji je sklopitev s hidrolizo ATP, ki je zelo ekser‑
gonska reakcija (slika 13.1B). Dvig šolske torbe s tal na mizo je npr. očiten
endergonski proces (torba spontano nikoli ne skoči s tal na mizo), ki pa se
vseeno zgodi, ko torbo primemo z roko in jo dvignemo na mizo. Ko šolsko
torbo dvignemo s tal, se torbi sicer poveča prosta entalpija, a hkrati se spro‑
sti še veliko več proste entalpije s hidrolizo ATP v naših mišicah, tako da
je celotna sprememba proste entalpije celotnega sistema pri tem negativna
in se proces lahko zgodi.

Prosta entalpija ima za termodinamske sisteme pri danem tlaku in tem‑
peraturi podobno vlogo, kot jo ima potencialna energija v mehanskih sis‑
temih, zato pravimo, da je prosta entalpija termodinamski potencial. To ana‑
logijo si je vredno zapomniti, saj nam olajša predstavo o marsikaterem za‑
pletenem termodinamskem procesu. Podobno kot kroglica na klancu se
lahko npr. tudi termodinamski sistem znajde v lokalnem ravnovesju, ki ga
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od stanja s še nižjo prosto entalpijo loči visoka energijska prepreka (slika
13.2B), ki je z naključnim termičnim gibanjem ne more enostavno preskoči‑
ti. Skozi evolucijo je narava za take situacije razvila celo vrsto encimov, ki
lahko biokemijske reakcije kljub visoki energijski prepreki popeljejo v glo‑
balni minimum proste entalpije (predstavljamo si lahko npr. da reakcijo
popeljejo po poti okoli visoke prepreke).

G

ΔG →A B

stanje sistema

A

B

Ea

Slika 13.2: Potrebni pogoj, da lahko pri dani temperaturi in danem tlaku steče
nek proces je, da je na koncu prosta entalpija nižja kot na začetku. V ravnovesju
ima prosta entalpija najmanjšo možno vrednost. Podobno kot mehanski sistem,
se lahko tudi termodinamski sistem ujame v lokalnem minimumu (točka A) kjer
jo od globalnega minimuma (točka B) loči visoka energijska prepreka. Čeprav je
proces A → B s stališča proste entalpije možen (∆GA→B < 0), pa zaradi viso‑
ke energijske prepreke ne more steči. Energijsko prepreko za kemijske reakcije
imenujemo tudi reakcijska aktivacijska energija (Ea) in smo jo srečali že v uvodnem
poglavju pri Arrheniusovi enačbi. Proces lahko vseeno steče, če sistemu dodamo
encim, ki∆GA→B sicer ne spremeni, a zna proces do minimuma pripeljati po dru‑
gi, ugodnejši poti mimo energijske prepreke (črtkana črta).

Opisani mehanizem je eden glavnih mehanizmov regulacije biokemij‑
kih reakcij. Če bi bila za potek kemijske reakcije pomembna le razlika med
začetno in končno prosto entalpijo, bi nam ATP spontano takoj hidroliziral
v ADP, ki ima manjšo prosto entalpijo in je zato bolj stabilen. K sreči pa je
med ATP in ADP visoka energijska prepreka, ki je brez ustreznih encimov
ne moremo prečiti. ATP je tako zelo uporabna »zaloga« energije, katere
porabo lahko z encimi dobro nadzorujemo.

V splošnem torej velja, da je prosta entalpija količina, ki pove, katere
spremembe so spontano sploh mogoče, ne pa tudi kako hitro lahko spre‑
membe potekajo in kako hitro ravnovesje dosežemo. Hitrosti reakcij opi‑
suje kemijska kinetika, katere opis pa bomo prepustili biokemiji.

Omenimo naj še, da za sisteme pri dani prostornini (in torej ne pri da‑
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nem tlaku) prosta entalpija ni uporabna količina in vlogo termodinamske‑
ga potenciala prevzame t. i. prosta energija, v kateri namesto entalpije na‑
stopa notranja energija (F = Wn − TS). V biologiji takih sistemov in tudi
proste energije ne bomo srečali prav pogosto.

Čeprav je prosta entalpija na prvi pogled zelo abstraktna količina, pa
se v njenem zapisu skriva ključ za preprosto intuitivno razumevanje mar‑
sikaterega naravnega procesa. Iz enačbe 13.1 namreč vidimo, da je rav‑
novesje sistema (minimum proste entalpije) pogojeno z ravnotežjem med
entalpijskimi in entropijskimi efekti. Ob tem se spomnimo, da je v izrazu
za entalpijo skrita notranja energija in s tem tudi različne oblike potenci‑
alne energije (enačba 11.11). Po eni strani zato konservativne sile sistem
neprestano vlečejo proti čim manjši entalpiji, po drugi strani pa zaradi ter‑
mičnega gibanja sistem teži proti stanju s čim večjo entropijo. Temperatura
sistema določa, katera težnja prevlada. Pri nizki temperaturi prevlada te‑
žnja po čim nižji potencialni energiji sistema (člen z entropijo TS je ne glede
na vrednost entropije majhen v primerjavi s H zato bo minimum G dolo‑
čen le z minimumom H), pri visoki pa težnja po čim višji entropiji (člen
TS v tem primeru k prosti entalpiji prispeva mnogo več kot H , zato bo
minimum G določen z maksimumom S).

Vse nam bo bolj jasno, če si ogledamo preprost primer, npr. obnaša‑
nje molekul plina pod vplivom teže (slika 13.3). Če bi bila temperatura
zelo nizka, bi se termično gibanje molekul ustavilo in vse molekule bi pod
vplivom teže padle na tla. V tem stanju bi imel sistem sicer zelo majhno en‑
tropijo, a bi bilo to zaradi nizke temperature za vrednost G nepomembno,
zato bi bilo ravnovesno stanje določeno z minimumom potencialne ener‑
gije oz. entalpije. Če bi bila po drugi strani temperatura zelo visoka, bi
bilo močno tudi termično gibanje molekul in v ravnovesju bi bile moleku‑
le razmetane po vsem prostoru. Pri visoki temperaturi bi bilo ravnovesje
torej pogojeno z entropijo, entalpija pa za ravnovesje sistema ne bi bila po‑
membna, saj bi bila zanemarljivo majhna v primerjavi s produktom TS. Pri
normalnih temperaturah ne prevladajo ne energijski, ne entropijski efek‑
ti in je ravnovesje nekje med obema ekstremoma. Molekule plina so sicer
razmetane po vsem prostoru, a je njihova gostota pri tleh vseeno malo ve‑
čja kot pri stropu (več o tem še kasneje, ko bomo ta primer obravnavali tudi
kvantitativno).

Podobna situacija je pri preprostih kemijskih reakcijah. Ustvarjanje ve‑
zi med sestavnimi deli v nekem sistemu je vedno eksotermen proces, se
pravi, da je entalpija vezanih sestavnih delov manjša kot entalpija neveza‑
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nih. Po drugi strani je tudi entropija vezanih sestavnih delov manjša kot
entropija nevezanih delov. Pri nizkih temperaturah entropija sistema za
ravnovesje ni tako pomembna in bo sistem v stanju, ko je večina sestavnih
delov vezanih. Z zviševanjem temperature pa se bo sistem približeval sta‑
nju z največjo entropijo, to je stanju, ko so vsi sestavni deli v nevezanem
stanju in naključno razmetani po vsem prostoru. Ko npr. kuhamo hrano,
se zaradi vedno večjega termičnega gibanja v biomolekulah trgajo vezi,
zato biomolekule denaturirajo ali celo razpadejo. V praksi je ravnovesje
ponavadi nekje vmes med obema ekstremoma in je nekaj sestavnih delov
vezanih, nekaj pa ne. Kemijske reakcije so zaradi tega vedno ravnotežne
in nikoli ne stečejo povsem do konca, zato imamo v sistemu v ravnovesju
vedno neko mešanico med reaktanti in produkti.
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H S

nizka T srednja T visoka T

G	=	H	-	T	S

plin pod 
vplivom teže

povečevanje Szmanjševanje H

kemijska 
reakcija

Slika 13.3: Shematičen prikaz vpliva temperature na ravnovesno stanje sistema.
Ravnovesje je pogojeno z minimumom proste entalpije tj. z ravnotežjem med te‑
žnjo po čim manjši entalpiji (oz. energiji) in težnji po čim večji entropiji. Pri nizkih
temperaturah prevladuje prva, pri visokih druga. Slike v zgornji vrsti shematično
prikazujejo ravnovesje molekul plina pod vplivom teže. Pri nizki temperaturi je
sistem v stanju z najnižjo potencialno energijo – vse molekule so pri tleh. Pri vi‑
soki temperaturi je sistem v stanju z največjo entropijo – molekule so enakomerno
razmetane po vsem prostoru. Pri vmesnih temperaturah je ravnovesje nekje med
obema ekstremoma. Z višanjem temperature se ravnovesje sistema premika proti
desnemu ekstremu, z nižanjem temperature pa proti levemu. Slike v spodnji vrsti
shematično prikazujejo ravnovesje pri preprostih kemijskih reakcijah. Pri nizkih
temperaturah entropija sistema ni pomembna in je sistem v stanju z najmanjšo
entalpijo – molekule so povezane z vezmi. Z zviševanjem temperature postaja
entropijski člen v prosti entalpiji vse bolj pomemben, veča se termično gibanje
molekul, vezi se trgajo in ravnovesje se premika proti stanju z največjo entropijo,
v katerem so vse vezi potrgane. V praksi je ravnovesje nekje med obema ekstre‑
moma in je del molekul povezanih z vezmi, del pa je prostih.
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V tem poglavju smo spoznali eno od najbolj fundamentalnih lastnosti
narave: pri dani temperaturi in danem tlaku se sistemi spontano spremi‑
njajo le v smer proti nižji prosti entalpiji in pri tem iščejo ravnotežje med
čim manjšo entalpijo in čim večjo entropijo. V nadaljevanju bomo spoznali
še nekaj dodatnih trikov, ki nam bodo pomagali pri kvantitativnem razu‑
mevanju konkretnih primerov.

13.2 Kemijski potencial in prehajanje snovi med
različnimi stanji

Pogosto je snov v sistemu lahko v različnih stanjih oz. fazah. Ko npr. v
pljuča vdihnemo zrak, se kisik razporedi tako, da ga je nekaj v zraku, ne‑
kaj pa se ga raztopi v kri. Tudi voda v pljučih je delno v tekočem stanju
v tkivih, delno pa v plinastem stanju v zraku. Podobno se pri vsaki bio‑
kemijski reakciji kemijskih elementi iz ene spojine preuredijo v drugo (v
jeziku termodinamike pravimo, da gredo iz enega stanja v drugega). Kot
vse procese, tudi te nadzoruje prosta entalpija, ki se pri spontanih spre‑
membah znižuje, v ravnovesju pa doseže najmanjšo možno vrednost.

Opisovanje prehajanja snovi iz enega stanja v drugega nam zelo olajša
koncept kemijskega potenciala, ki opisuje prosto entalpijo na mol snovi. Ke‑
mijski potencial uvedemo podobno, kot druge »specifične« količine, npr.
gostoto snovi. Če ima n molov neke snovi prosto entalpijo G, potem ima
snov kemijski potencial

µ =
G

n
= H − TS (13.4)

kjer smo s črto označili molarne vrednosti entalpije in entropije (entalpijo
na mol snovi, H̄ = H/n, in entropijo na mol snovi, S̄ = S/n). Kemijski po‑
tencial ima torej enoto kJ/mol (opozorimo naj, da so definicije pri biokemiji
včasih malo drugačne kot pri fiziki, primer 13.1).

Na ravnovesje snovi v dveh stanjih poglejmo s stališča kemijskega po‑
tenciala. Če je v nekem sistemu snov v dveh stanjih, lahko celotno prosto
entalpijo sistema zapišemo kot vsoto proste entalpije snovi v prvem stanju
in vsoto proste entalpije v drugem stanju

G = µ1n1 + µ2n2 . (13.5)
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Obnašanje takega sistema lahko analiziramo, če izračunamo, kako se spre‑
meni njegova prosta entalpija, če∆nmolov snovi preide iz prvega v drugo
stanje. V tem primeru se bo količina snovi v prvem stanju zmanjšala za∆n,
količina snovi v drugem stanju pa za enako vrednost povečala. Spremem‑
bo proste entalpije celotnega sistema lahko tako zapišemo kot:

∆G = ∆G1 +∆G2 = −∆nµ1 +∆nµ2 = ∆n(µ2 − µ1) (13.6)

Prehod snovi iz prvega v drugo stanje se bo spontano zgodila le, če bo
sprememba proste entalpije negativna. Iz zgornje enačbe vidimo, da bo
sprememba proste entalpije negativna, če bo kemijski potencial v drugem
stanju manjši kot v prvem stanju. Ugotovitev lahko strnemo v naslednjo
zakonitost: snov spontano prehaja iz stanja z višjim kemijskim potenci‑
alom v stanje z nižjim kemijskim potencialom. Če sta kemijska poten‑
ciala v obeh stanjih enaka, je snov v ravnovesju. Kisik oz. katerikoli plin
se npr. v krvi raztaplja le, če je njegov kemijski potencial v krvni plazmi
nižji kot v zraku. Če pa je kemijski potencial plina v krvni plazmi višji kot
v zraku, se bo iz krvi izločal.

Primer 13.1: enote za energijo v biokemiji

Pri fiziki smo navajeni, da je energija ekstenzivna količina, zato imata v fiziki H
in G enoto J. Drugače je pri biokemiji, kjer energijo ponavadi izražajo na mol sno‑
vi in je torej intenzivna količina. Pri biokemiji imata H in G zato ponavadi enoto
kJ/mol in sta pravzaprav povezani z našima molarno entalpijo in kemijskim poten‑
cialom. Primer: osrednji pojem pri opisovanju biokemijskih reakcij je sprememba
standardne proste entalpije reakcije ∆G0′ (kot boste spoznali kasneje je ta količina
neposredno povezana s ravnotežno konstanto reakcije pri standardnih pogojih).
V našem jeziku je sprememba standardne proste entalpije reakcije enaka razliki
kemijskih potencialov produktov in reaktantov pri standardnih pogojih.

∆G0′ = µ0 produkti − µ0 reaktanti

Pri standardnih pogojih (tj. če zmešamo 1 M raztopine reaktantov in produktov)
bo reakcija stekla v smer produktov, če bo kemijski potencial produktov manjši
kot kemijskih potencial reaktantov oz. če bo ∆G0′ < 0.

13.3 Kemijski potencial plinov in raztopin

Živa bitja smo v prvem približku »vreče, napolnjene z vodno raztopino,«
zato je dobro poznavanje termodinamike raztopin nujno za razumevanje
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mnogih fizioloških procesov. Preden si v prihodnjih poglavjih razložimo
procese kot so osmozni tlak ali raztapljanje plinov, na raztopine poglejmo
s stališča proste entalpije in kemijskega potenciala. Slika 13.4 shematično
predstavlja tipičen sistem z raztopino: v vodi je raztopljen topljenec, oba
pa sta v stiku z zrakom. Molekule vode lahko prehajajo iz zraka v razto‑
pino, zato bo v ravnovesju kemijskih potencial vode v zraku enak kemij‑
skemu potencialu vode v raztopini. Če je topljenec hlapljiv (taki so npr.
vsi plini), lahko tudi topljenec prehaja med vodo in zrakom in bo v ravno‑
vesju tudi kemijski potencial topljenca v zraku in v raztopini enak (pozor:
za ravnovesje ni potrebno, da je kemijski potencial vode enak kemijske‑
mu potencialu topljenca, ampak le da je za vsako posamezno snov enak v
obeh stanjih). Če kemijski potencial ene od snovi ni enak v obeh oblikah,
sistem ne bo v ravnovesju in bo snov prehajala iz višjega na nižji kemijski
potencial.

Slika 13.4: Fiziološki sistemi so pogosto v stiku z zrakom, zato lahko v njih voda
in topljenci prehajajo med zrakom in raztopino. Prehajanje vsake od snovi je od‑
visno od razlike med kemijskih potencialom te snovi v zraku in raztopini. Snov
prehaja v smer proti nižjemu potencialu, če pa sta oba potenciala enaka, je snov
v ravnovesju. Na sliki so shematično prikazane vezi med topljencem in vodo, ki
prispevajo k vezavni entalpiji topljenca z vodo.

Pri oceni kemijskega potenciala plinov in raztopin se moramo spomni‑
ti njegove definicije (enačba 13.4): kemijski potencial neke snovi bo tem
manjši, čim manjša bo molarna entalpija snovi in čim večja bo molarna
entropija snovi. Entropija bo tem večja, čim bolj bo snov razurejena, pri
razmisleku o entalpiji pa se moramo spet spomniti njene definicije (enačba
11.11) in jo prepisati v molarno obliko: H = W n+pV , kjer je V prostornina
na mol snovi. Entalpija bo torej v splošnem tem manjša, čim več vezi s so‑
sedami tvorijo molekule, čim manjšo potencialno energijo zaradi zunanjih
sil imajo (npr. gravitacijsko ali energijo v zunanjem električnem polju) in
čim manjši je produkt pV .
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Zgornje ugotovitve poskusimo še podrobneje razčleniti. Pri tem bomo
predpostavili, da je snov v zraku idealni plin, raztopina pa je idealna raz‑
redčena raztopina. Podobno kot pri gravitacijskem potencialu so tudi pri
kemijskem relevantne le spremembe potenciala oz. razlike do standardne‑
ga stanja, ki ga bomo označili z indeksom 0. Opisali bomo štiri glavne pri‑
spevke h kemijskem potencialu v raztopinah, trije bodo entalpijski, eden
pa entropijski:

1. Vezi med molekulami (entalpijski prispevek)

Začnimo z najbolj osnovnim razlogom za prehajanje snovi med stanji: ustvar‑
janje vezi med molekulami. Več kot ima molekula vezi s sosedami, bolj je
to zanjo energijsko ugodno. V razredčenih raztopinah se molekule topljen‑
ca med seboj praktično nikoli ne srečajo, zato so v takih raztopinah v prvi
vrsti pomembne le vezi med topljencem in vodo. Čim močnejše vezi z vo‑
do lahko ustvari neka snov, tem bolj je hidrofilna, in obratno, če neka snov
z vodo ne tvori vezi, pravimo da je hidrofobna. Molarno vezavno entalpijo
označimo z ∆Hv (definirana je tako, da je ∆Hv > 0 – čim bolj je neka snov
hidrofilna, tem bolj pozitivna je ta razlika).

Za molekule vode seveda velja enako, kot velja za molekule topljen‑
ca, saj so molekule vode tudi »hidrofilne«. Razliko entalpij v vezanem
in nevezanem stanju smo pri vodi že srečali, saj je nevezano stanje mo‑
lekul vode pravzaprav vodna para. Vezavna entalpija vode je torej nepo‑
sredno povezana z izparilno toploto vode, ki jo poznamo iz enačbe 11.7:
∆HvH2O = mqi

n
= MH2Oqi. Vezavna entalpija je pogosto odvisna od tempe‑

rature, a ta odvisnost v splošnem ni enostavna, zato se ji tu ne bomo imeli
časa posvetiti.

2. Potencialne energije molekul (entalpijski prispevek)

Drugi vpliv na kemijski potencial snovi je vpliv potencialnih energij, ki jih
imajo molekule zaradi zunanjih potencialov, npr. gravitacijskega potenci‑
ala (pri fizoloških procesih tega ponavadi ni treba upoštevati, saj so vsi deli
sistema na praktično enaki višini) ali električnega potenciala (tega moramo
nujno upoštevati pri vseh elektrofizioloških procesih, ki jih bomo spozna‑
li v poglavju o elektriki). Iz mehanike se spomnimo, da je gravitacijska
potencialna energija enaka Wp = mgz. Odmik kemijskega potenciala od
standardnih pogojev zaradi vpliva težnosti (molarna potencialna energija)
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bo torej:
µ = µ0 +Mgz , (13.7)

kjer je M molska masa molekul, z pa višina njihovega položaja (pri tem
smo predpostavili, da je v standardnem stanju višina enaka 0 ter upoštevali
zvezo M = m/n). Kasneje, ko bomo obravnavali membranski potencial
v celicah, bomo videli, da lahko na podoben način zapišemo tudi vpliv
električnega potenciala, tj. elektrokemijski potencial.

3. Produkt pV (entalpijski prispevek)

Tretji vpliv na kemijski potencial snovi izhaja neposredno iz definicije pro‑
ste entalpije, iz katere je razvidno, da je kemijski potencial snovi odvisen od
produkta pV . Ta prispevek k prosti entalpiji smo nevede že srečali pri opi‑
sovanju mehanike pretakanja tekočin: voda, ki je nestisljiva (V je praktično
konstanten), teče od višjega tlaka k nižjemu, saj ima pri slednjem nižji ke‑
mijskih potencial. Po drugi strani ta prispevek za idealne pline ni relevan‑
ten, saj je pri njih produkt pV pri dani temperaturi konstanten (spomnimo
se plinske enačbe). Pravzaprav tega člena pogosto ni potrebno upoštevani
niti pri vodi, saj je tudi tlak vode pri marsikaterem sistemu povsod enak in
se produkt pV med procesi ne spreminja.

4. Entropija oz. neurejenost sistema (entropijski prispevek)

Razmislek o kemijskih potencialih v raztopinah končajmo z zapisom en‑
tropijskega dela kemijskega potenciala. Za plinasto stanje smo že poka‑
zali, da so spremembe entropije pri dani temperaturi odvisne od logarit‑
ma tlaka (enačba 12.4). Entropijski del kemijskega potenciala dobimo, če
spremembo molarne entropije pomnožimo s temperaturo. Odmik entro‑
pijskega dela kemijskega potenciala plina od standardnih pogojev bo torej
enak

µplin = µ0 +RT ln
p

p0
, (13.8)

Za topljence v vodi entropije sicer nismo izračunali, a iz izkušenj s plini
lahko sklepamo, da je njihova neurejenost (na mol) tem večja, čim bolj so
molekule topljenca razmetane po vodi oz. z drugimi besedami, čim manj‑
ša je koncentracija snovi. Izkaže se, da je izraz za entropijo topljencev v
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idealnih razredčenih raztopinah podoben kot za entropijo idealnih plinov,
le da je potrebno tlak v enačbi zamenjati s koncentracijo. Entropijski člen
za kemijski potencial topljenca v vodi pri dani temperaturi je torej:

µtopljenec = µ0 +RT ln
c

c0
, (13.9)

pri čemer smo z indeksom 0 spet označili standardne pogoje.
Na koncu moramo razmisliti še o entropiji topila, tj. vode. Za začetek

spet sledimo intuiciji: več kot bo v vodi raztopljenih snovi, bolj bodo mo‑
lekule vode razurejene. Pričakujemo torej, da bo kemijski potencial vode
tem manjši, čim večja bo koncentracija topljenca. Daljši račun pokaže, da
lahko entropijski prispevek h kemijskem potencialu vode pri dani tempe‑
raturi zapišemo kot

µH2O = µ0 −RTV H2O
∑

ci , (13.10)

pri čemer smo upoštevali, da je lahko v vodi raztopljenih več različnih to‑
pljencev, katerih koncentracije smo označili s ci. Koncentracije moramo v
zgornjo enačbo vnašati v molarnih enotah (mol/l). Pri tem moramo pou‑
dariti, da je entropiji vode v idealni razredčeni raztopini vseeno, kakšne
vrste molekul so raztopljene v njej, pomembna je le skupna koncentraci‑
ja raztopljenih delcev

∑
ci. Kasneje bomo videli, da je ta entropijski člen

odgovoren za nekaj zanimivih lastnosti raztopin, ki pa so vse neodvisne
od vrste raztopljenih molekul, ampak le od njihove celotne koncentracije.
Take lastnosti imenujemo koligativne lastnosti, prvo pa bomo spoznali že
kar v naslednjem razdelku.

13.4 Osmozni tlak
Eden od osnovnih gradnikov živih bitji so celične membrane, ki celice in
celične organele razmejujejo v različne funkcionalne enote. Temeljna zna‑
čilnost celičnih membran je njihova selektivna prepustnost, pri čemer so
ponavadi za vodo mnogo bolje prepustne kot za topljence. Voda lahko ta‑
ko preko membran skoraj prosto prehaja v smer proti nižjemu kemijskem
potencialu. To prehajanje vode imenujemo osmoza. V prejšnjem razdelku
smo ugotovili, da je entropijski del kemijskega potenciala vode odvisen od
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skupne koncentracije topljencev v njej, tj. od zadnjega člena v enačbi 13.10.
Ta člen je za fiziološke procese tako pomemben, da si je njegov glavni del
prislužil svoje ime – imenujemo ga osmozni tlak in označimo s Π:

Π = RT
∑

ci . (13.11)

Ker je enota za koncentracijo mol na liter, lahko s pomočjo primerjave s
plinsko enačbo hitro ugotovimo, da je osmozni tlak zares »tlak«, saj ima
isto enoto (Pa). Ker je osmozni tlak entropijskega izvora, je koligativna
lastnost in njegova vrednost ni odvisna od vrste topljencev, temveč le od
njihove celotne koncentracije. Še več, za entropijo je pomembno le, koli‑
ko »delcev« je raztopljenih, zato moramo pri snoveh, ki v vodi disociirajo
upoštevati vse disociirane delce. Z namenom, da se to dejstvo poudari, so
za merjenje koncentracije vseh osmotsko aktivnih delcev uvedli količino
osmolarnost z enoto Osm2. Vse bo bolj jasno z naslednjim primerom: če
npr. v 1 l vode raztopimo 1mol NaCl, le‑ta v celoti disociira, zato bo ce‑
lotna koncentracija raztopljenih delcev 2mol/l (en mol Na+ in en mol Cl–).
Osmolarnost eno molarne raztopine NaCl je torej 2Osm. Če po drugi stra‑
ni v 1 l vode raztopimo en mol glukoze, ki v vodi ne disociira, dobimo eno
molarno raztopino glukoze, ki ima osmolarnost 1Osm.

V prejšnjem poglavju smo spoznanli, da poleg osmoznega tlaka, ki je
entropijskega izvora, na kemijski potencial vode vpliva tudi njen hidro‑
statski tlak oz. entalpijski prispevek s produktom pV . Celotni kemijski
potencial vode je tako sestavljen iz osmoznega in hidrostatskega tlaka:

µH2O = µ0 + pV H2O −RTV H2O
∑

ci = µ0 + (p− Π)V H2O . (13.12)

Voda torej prehaja proti čim višjemu osmoznemu tlaku in čim nižjemu
hidrostatskemu tlaku (slika 13.5).

Ravnotežje med osmoznim in hidrostatskim tlakom se lepo vidi v pre‑
2V literaturi ni enotne terminologije in zapisa enot za osmolarnost: včasih jo pišejo z

malo začetnico, včasih pa dodajo še »na liter« (zapisi 100 mOsm, 100 mosm in 100 mo‑
sm/L tako označujejo isto koncentracijo osmotsko aktivnih delcev). Da bi bila zmeda še
večja, obstaja tudi osmolalnost (z »l« namesto »r«) – ta označuje koncentracijo na kg vode.
Neenoten zapis nam ponavadi ne povzroča težav, saj lahko iz konteksta uganemo, kaj je
bilo mišljeno.
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voda se pomika proti
višjemu osmoznemu tlaku

voda se pomika proti
nižjemu hidrostatskemu tlaku

p₁ < p₂Π Π₁	>	 ₂
F

Slika 13.5: Shematični prikaz dveh glavnih vplivov na prehajanje vode med pre‑
delki. Voda prehaja proti višjemu osmoznemu tlaku (Π) oziroma proti nižjemu
hidrostatskemu tlaku (p). Za prehajanje vode v celice je odgovoren predvsem
osmozni tlak, saj je hidrostatski tlak v celicah ponavadi enak kot v medceličnem
prostoru, na prehajanje vode med krvožiljem in medceličnim prostorom pa vpli‑
va tudi hidrostatski tlak krvi (primer 13.2).

prostem poskusu s cevko v obliki črke U, ki ima na sredini membrano,
prepustno le za vodo (slika 13.6A). Na eno stran cevke damo raztopino, na
drugo pa enako količino čiste vode. Kemijski potencial vode v raztopini je
nižji, zato bo voda vdirala proti raztopini in se bo gladina raztopine začela
dvigovati. Z zviševanjem gladine se bo na tisti strani kemijski potencial
višal, ravnovesje pa se bo vzpostavilo, ko bo imela voda na obeh straneh
membrane enak kemijski potencial. Zapišimo ravnovesno zahtevo, da je
na levi in desni strani membrane enak kemijski potencial vode:

µL = µD ⇒ µ0 + (pL − ΠL)V H2O = µ0 + pDV H2O ,

pri čemer smo upoštevali, da je osmozni tlak vode na desni strani membra‑
ne enak nič. Ko iz zgornje enačbe pokrajšamo µ0 in molarno prostornino
vode, ugotovimo, da bosta kemijska potenciala enaka natanko takrat, ko
bo razlika hidrostatskih tlakov vode na levi in desni strani membrane za‑
radi razlike višin (pL − pD = ρg∆h) ravno uravnovesila osmozni tlak. V
ravnovesju bo torej veljalo: Π = ρg∆h.

Osmozni tlak je eden glavnih nadzornikov prehajanja vode med pre‑
delki v tkivih in celicah. Situacija v živih tkivih je seveda mnogo bolj za‑
pletena kot pri cevki v obliki črke U, saj celice neprestano regulirajo prepu‑
stnost membran za različne topljence, poleg tega pa se celice različnih vrst
obnašajo različno. Ker k osmoznemu tlaku prispevajo le snovi, ki preko
membrane ne morejo prehajati, so fiziologi za merilo osmoznega tlaka, ki
v fizioloških sistemih vpliva na prehajanje vode, uvedli količino toničnost.
Toničnost torej ustreza celotni koncentraciji osmotsko aktivnih delcev, tj.
delcev, ki ne morejo prehajati membrane. V tem kontekstu se uporablja
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Slika 13.6: Prikaz vpliva osmoznega tlaka. Kemijski potencial vode je tem manjši,
čim več je v njej raztopljenih snovi (enačba 13.10), zato voda teče v smer proti večji
koncentraciji raztopljenih snovi. A) Cevka v obliki črke U je na sredini predelje‑
na z membrano, ki je prepustna le za vodo. Ko v levi krak raztopine natresemo
topljenec, se bo na levi strani vodi znižal kemijski potencial, zato bo voda iz de‑
sne strani začela vdirati na levo. Ravnovesje se vzpostavi, ko je kemijski potencial
vode na obeh straneh membrane enak, tj., ko je osmotski tlak enak razliki hidro‑
statskih tlakov, do katerega pride zaradi razlike višin ∆h. B) Celične membrane
so za vodo dobro prepustne, za večino topljencev pa ne. V izotoničnem okolju je
koncentracija snovi enaka kot v celici. Če celico prestavimo v hipertonočno okolje
(koncentracija snovi v njem je večja kot v celici), bo začela voda uhajati iz celice in
celica se bo skrčila. Če celico prestavimo v hipotonično okolje (koncentracija sno‑
vi v njem je manjša kot v celici), bo voda začela vdirati v celico, celica bo začela
nabrekati in lahko v skrajnem primeru celo poči.

tudi izraz onkotski tlak oz. koloidno‑osmotski tlak, ki opisuje osmozni tlak, ki
ga ustvarjajo koloidi in makromolekule, ki v normalnih pogojih ne more‑
jo prehajati preko membrane. Če celice prestavimo v hipertonično okolje
(tj. v okolje z večjo koncentracijo snovi), bo voda začela uhajati iz celic in
celice se bodo skrčile (slika 13.6B). Če jih po drugi strani prestavimo v hi‑
potonično okolje (tj. v okolje z manjšo koncentracijo snovi), bo voda začela
vdirati v celice, celice bodo nabrekale in v skrajnem primeru celo počile, saj
celična membrana in citoskelet nista dovolj močna, da bi lahko ustvarjala
hidrostatski tlak, ki bi kljuboval osmotskemu.

Osmozni tlak je zelo pomemben tudi pri uravnavanju prehajanja vo‑
de iz krvi v medcelično (intersticijsko) tekočino, ki obdaja organe (primer
13.2). Pri tem pomemben delež k osmotskemu (onkotskemu) tlaku krvne
plazme prispeva protein albumin, ki ne more prehajati preko žilnih sten.
Če se zaradi bolezni količina albumina v plazmi zniža, lahko npr. nastane
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edem, tj. kopičenje tekočine v medceličnem prostoru v tkivih.
Osmolarnost fizioloških raztopin je približno 300Osm, kar ustreza 0,9%

raztopini NaCl, ki jih zato pravimo tudi fiziološka raztopina. Toničnost je od‑
visna od prepustnosti celičnih membran, le ta pa v telesu ni vedno in pov‑
sod enaka. Raztopina, ki je izotonična v nekem fiziološkem okolju, zato ni
nujno povsem izotonična v drugem. Na to moramo biti še posebej pozorni
pri nadomeščanju izgubljenih telesnih tekočin, saj morajo nadomestne te‑
kočine poskrbeti za nadomestilo izgubljenih ionov in hranil, hkrati pa mo‑
rajo imeti tudi ustrezno toničnost za določeno situacijo. Za nadomeščanje
večjih izgub krvi zato ne obstaja univerzalna fiziološka raztopina, ampak je
na razpolago več različnih vrst raztopin z različnimi lastnostmi. Raztopi‑
ne v katerih so večinoma raztopljeni ioni imenujemo kristaloidne raztopine,
včasih pa uporabljajo tudi t. i. koloidne raztopine, ki toničnost uravnavajo z
različnimi makromolekulami, ki preko membran ne morejo prehajati.

Primer 13.2: prehajanje vode med predelki v telesu

S stališča razporeditve tekočine si lahko človeško telo v grobem predstavljamo kot
sistem treh predelkov, ki so med seboj ločeni s polprepustnimi membranami in so
shematično prikazani na spodnji sliki (povzeto po [13]).

krvna
plazma

3 l11 l28 l

intersticijska
tekočina

znotrajcelična
raztopina

zunajcelična
raztopina

celične
membrane

kapilarne
stene

Največji delež vode v telesu je shranjen v celicah v obliki znotrajcelične raztopine
(približno 28 l), približno trikrat manj tekočine je v medceličnem prostoru (pribli‑
žno 11 l) ter še približno trikrat manj v krvi v obliki krvne plazme (približno 3 l,
celotna prostornina krvi je približno 5 l, a od tega približno 2 l odpade na rdeče
krvne celice).
V celicah je hidrostatski tlak enak kot v zunajceličnem prostoru, zato je prehajanje
vode med tema predelkoma pogojeno z osmoznim tlakom. Osmozni tlak celice
regulirajo z različnimi aktivnimi mehanizmi, ki neprestano črpajo ione in majhne
molekule preko membrane in vzdržujejo enako koncentracijo raztopljenih delcev
na obeh straneh membrane.
Regulacija prehajanja vode med žilami in medceličnino je drugačna. Stene kapilar
so namreč prepustne za majhne molekule (npr. za ione in glukozo), zato je koncen‑
tracija majhnih molekul v krvi in medcelični raztopini praktično enaka. Po drugi
strani je zaradi delovanja srca hidrostatski tlak v žilah višji kot v medceličnini. Da
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nam voda ne odteče iz žil, morajo biti v krvni plazmi zato raztopljene velike mole‑
kule, ki ne morejo prehajati preko kapilarnih sten. Osmozni tlak, ki nastane zara‑
di makromolekul imenujemo tudi onkotski tlak ali koloidnoosmotski tlak. Situacija je
pravzaprav še malo bolj zapletena: ker je krvni tlak v arterijah višji kot v venah, je
na začetku kapilar hidrostatski tlak krvi malo višji od onkotskega, zato tam voda
ponavadi iz žil pronica v medceličnino. Na venski strani kapilar je hidrostatski
tlak krvi malo nižji od onkotskega, zato tam voda pronica nazaj iz medceličnine v
kapilare. Ker skupaj z vodo potujejo tudi različne majhne molekule, ta mehanizem
olajša izmenjavo snovi med krvjo in tkivi.
Za občutek izračunajmo, kolikšen tlak ustvari razlika osmolarnosti 1 mOsm pri
normalni telesni temperaturi 36 °C. Ko v enačbo za osmozni tlak (enačba 13.11)
vstavimo koncentracijo osmotsko aktivnih delcev 1 mmol/l, dobimo:

Π = RTc =
8,3 J

mol · K
309K 10−3 mol

10−3 m3 = 2565Pa = 19,3mmHg . (13.13)

Za primerjavo: plazemska koncentracija albumina, ki je najpomembnejši plazem‑
ski protein, je približno 40g/l. Njegova molska masa je 66,5kDa, iz česar lahko
izračunamo, da je njegova koncentracija v plazmi

c =
0,04kg

l
mol

66,5kg
= 0,6mM (13.14)

Albumin tako k onkotskemu tlaku prispeva kar približno 12 mmHg, kar nikakor
ni zanemarljivo v primerjavi s spremembami krvnega tlaka v krvnem obtoku. Bo‑
lezni, zaradi katerih nam albumina primanjkuje, lahko zato vodijo v edem tj. kopi‑
čenje tekočine v medceličnem prostoru in posledično zatekanje tkiv, kar prikazuje
spodnja slika [14].
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13.5 Fazni diagram vode in vlažnost zraka
Vse vrste življenja na Zemlji so zelo odvisne od vode ter njenega prehajanja
med agregatnimi stanji. Za človeško telo je npr. izhlapevanje vode eden
glavnih mehanizmov vzdrževanja telesne temperature. Iz razprave o ke‑
mijskih potencialih vemo, da bo pri danem tlaku in dani temperaturi voda
spontano prehajala iz stanja z višjim v stanje z nižjim kemijskim potenci‑
alom, v ravnovesju pa bosta kemijska potenciala vode v obeh agregatnih
stanjih enaka. Ker so interakcije med molekulami vode zelo zapletene, ne
znamo napisati enostavne formule za odvisnost kemijskega potenciala vo‑
de od temperature in tlaka. To odvisnost pa si znamo razložiti na intui‑
tivnem nivoju: višja, kot je temperatura vode, večje je termično gibanje in
molekule lažje pretrgajo medsebojne vezi ter preidejo v stanje z večjo ne‑
urejenostjo (pri čemer je plinasto stanje bolj neurejeno kot tekoče, to pa je
bolj neurejeno kot trdno). Tlak po drugi strani snov stiska, zato z višanjem
tlaka postajajo bolj ugodna stanja z večjo gostoto (tu je voda posebnost med
snovmi, saj je v tekočem stanju gostejša kot v trdnem).

p [atm]

T	[°C]

izhlapevanjetaljenje

zmrzovanje kondenzacija

1

0

2

100 125750 25-25 50

paravodaled

Slika 13.7: Fazni diagram vode prikazuje meje, pri katerih lahko različna agrega‑
tna stanja vode soobstajajo v ravnovesju. Mejo med vodo in vodno paro si lahko
po eni strani predstavljamo kot odvisnost temperature vrelišča od tlaka, po drugi
pa kot odvisnost nasičenega delnega tlaka vodne pare v zraku od temperature.
Če je delni tlak vode v zraku nižji od nasičenega, bo voda hlapela, če je višji pa bo
kondenzirala. Črtkani črti označujeta vrelišče pri normalnih pogojih, pikčasti pa
na vrhu Mount Everesta in v ekonom loncu.

Obstojnost agregatnih stanj vode pogosto prikažemo v t. i. faznem dia‑
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gramu, ki v prikazuje ravnovesne meje med fazami vode v odvisnosti od
temperature in tlaka (slika 13.7). Mejo med vodo in vodno paro na faznem
diagramu si lahko predstavljamo kot odvisnost temperature vrelišča od
tlaka. Če se pri danem tlaku vode pomikamo proti višji temperaturi, bo
tekoče stanje slej ko prej postalo nestabilno in voda bo zavrela ter vsa izhla‑
pela. Pri normalnem zračnem tlaku je temperatura vrelišča znanih 100 °C,
s spreminjanjem tlaka pa se ta meja precej hitro spreminja: na vrhu Mount
Everesta pade na približno 70 °C, če pa je tlak višji od normalnega (npr. v
ekonom loncu ali v avtoklavu), lahko voda doseže tudi višjo temperaturo
– pri tlaku 2 atm je temperatura vrelišča npr. približno 120 °C.

Za fiziologijo je zanimiv še drug pogled na mejo med vodo in vodno
paro. Na faznem diagramu lahko vidimo, da sta v sistemu s čisto vodo
pri sobni temperaturi možni le tekoča in plinasta faza. Ravnovesje med
fazama bi imeli, če bi bil tlak vode in vodne pare zelo nizek, pri 25 °C je
to približno 3 kPa. Pri fizioloških pogojih je zračni tlak nad vodo seveda
precej višji, a spomniti se moramo, da je ta tlak predvsem posledica tla‑
ka drugih plinov v zraku in ne le vodne pare. Mejni tlak na diagramu si
moramo torej predstavljati kot mejni delni tlak vodne pare v zraku, ki ga
imenujemo tudi nasičeni parni tlak. Če je delni tlak vodne pare v zraku nižji
od nasičenega, bo voda izhlapevala, če pa bo višji bo kondenzirala.

Za ravnovesje vode pri normalnih pogojih je torej ključno, kolikšen je
delni tlak vode v zraku oz. koliko vode je v zraku. To lahko po eni strani
opišemo s pojmom absolutna vlažnost, ki pove, koliko mase vodne pare
je v dani prostornini zraka, še bolj pogosto pa vlažnost zraka opisujemo
z relativno vlažnostjo, ki je definirana kot razmerje med dejanskim delnim
tlakom vodne pare v zraku in nasičenim parnim tlakom:

η =
p

pnasič.
. (13.15)

Voda lahko torej izhlapeva, dokler je relativna vlažnost zraka manjša od
100 %. Pri normalnih pogojih je za zdravega človeka ugodna relativna vla‑
žnost zraka nekje okoli 50 %, če je vlažnost manjša, bo izhlapevanje prehi‑
tro, če bo večja (npr. v tropskih okoljih), pa s potenjem ne bomo več mogli
odvajati odvečne toplote in se lahko pregrejemo.

Ker je nasičen parni tlak vode (pnasič.) zelo odvisen od temperature (sli‑
ka 13.7), je pri dani količini vode v zraku (tj. pri danem delnem tlaku vo‑
dne pare) od temperature zelo odvisna tudi relativna vlažnost zraka – z
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višanjem temperature relativna vlažnost pada. To lastnost poznamo vsi
očalarji, saj se nam očala zarosijo vedno, ko iz mrzlega okolja vstopimo v
toplo in vlažno sobo (razmislite, kaj se zgodi v tem primeru!). Po drugi
strani so s tem povezane težave s presuhim zrakom v zaprtih ogrevanih
prostorih pozimi. Ko pozimi prezračimo prostor, v njega od zunaj pride
hladen in vlažen zrak. Ko pa se ta zrak nato v prostoru segreje, se v njemu
zviša nasičen parni tlak vode, zato postane relativno bolj suh. Na to mora‑
mo biti še posebej pazljivi pri oskrbovanju šibkih bolnikov, ki bi se lahko
z vdihavanjem presuhega zraka ali plinov iz jeklenke zelo hitro izsušili.
V pljučih je namreč med zrakom in tkivi ogromna površina, zato voda v
pljučih hitro izhlapi, izdihani zrak pa ima praktično 100 % vlažnost. Zrak,
ki ga med umetnim ventiliranjem dovajamo pacientom v intenzivni negi,
mora biti zaradi tega primerno navlažen in ogret.

Črta med ledom in vodo na faznem diagramu prikazuje odvisnost tem‑
perature ledišča od tlaka. Pri tej meji ni tako močne odvisnosti od tlaka in je
ledišče vedno približno pri 0 °C. Zanimivost vode v primerjavi z drugimi
snovmi je, da je ta meja nagnjena v levo, saj je pri višjih tlakih tekoča voda
bolj stabilna od ledu (led ima manjšo gostoto od vode). Meji med ledom
in vodo ter vodo in paro se stakneta v t. i. trojni točki vode, v kateri lahko
soobstajajo vsa tri agregatna stanja hkrati, in leži pri temperaturi malo nad
0 °C in pri tlaku le 612Pa.

Z našim znanjem termodinamike si lahko pojasnimo še eno pomemb‑
no lastnost vodnih raztopin. V prejšnjih poglavjih smo videli, da ima voda
tem nižji kemijski potencial, čim več topljencev raztopimo v njej. V primer‑
javi s čisto vodo imajo raztopine torej malo nižji kemijski potencial, zato so
bolj stabilne in zmrznejo šele pri nižji temperaturi oz. zavrejo šele pri višji
temperaturi od čiste vode (med zmrzovanjem topljenci ostajajo v vodi, zato
se z dodajanjem topljencev v raztopino ledu kemijski potencial spremeni
manj kot vodi). Izkaže se, da sta premika temperature ledišča in vrelišča
vode v prvem približku kar sorazmerna osmoznemu tlaku vode. Fizio‑
loška raztopina npr. zavre pri temperaturi približno 100,15 °C, zamrzne
pa pri približno −0,5 °C. Morska voda je približno štirikrat bolj slana od
fiziološke raztopine, zato zmrzne pri približno−2 °C. Odvisnost tempera‑
ture ledišča in vrelišča od osmoznega tlaka ima tudi praktično vrednost:
izkoriščajo jo osmometri, tj. inštrumenti za merjenje osmolarnost raztopin.
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13.6 Raztapljanje plinov
Poleg prehajanja vode med tekočim in plinastim stanjem je za fiziološke
procese zelo pomembno tudi prehajanje drugih plinov med zrakom in raz‑
topinami. Intuitivno sklepamo, da se raztopi tem več plina, čim več ga je v
plinastem stanju nad raztopino. Izkaže se, da v ravnovesju za mnoge pli‑
ne v prvem približku velja kar sorazmerna odvisnost koncentracije plina v
raztopini od delnega tlaka plina nad raztopino:

c = αp . (13.16)

kjer je cmolarna koncentracija plina v raztopini, p delni tlak plina nad raz‑
topino, α pa je topnostni koeficient. Zgornja zveza se imenuje tudi Henryjev
zakon, po angleškem kemiku Williamu Henryju, ki zakon odkril v začetku
19. stoletja (včasih ta zakon zapišejo tudi v obliki p = Kc, pri čemer se K
imenuje Henryjev koeficient, K = 1/α).

Topnostni koeficient je v prvi vrsti odvisen od razlike entalpij molekul
plina v plinastem in raztopljenem stanju – čim več vezi tvorijo molekule pli‑
na z vodo, tem raje se plin topi in tem večji je njegov topnostni koeficient.
Poleg tega je topnostni koeficient odvisen tudi od temperature. Na osnovi
našega znanja termodinamike lahko sklepamo, da se topnostni koeficient
hidrofilnih plinov z višanjem temperature manjša: z višanjem temperature
se veča tudi termično gibanje, zaradi česar molekule plina iz vode vse lažje
»skačejo« v plinasto stanje in jih je torej vse manj v raztopini (slika 13.8A).
Z drugimi besedami, z višanjem temperature se ravnovesje premika pro‑
ti stanju s čim višjo entropijo, tj. stanju, ko so molekule plina enakomerno
razmetane po vsej dostopni prostornini. Pri danem tlaku se npr. v vodi pri
temperaturi 37 °C raztopi kar 30 % manj kisika kot pri sobni temperaturi
(slika 13.8B). Topnostni koeficienti za nekatere pline pri sobni temperaturi
so predstavljeni v tabeli 13.1, odvisnost topnostnega koeficienta od tempe‑
rature pa izpeljana v MaFijskem primeru 13.1.

Kri je tudi vodna raztopina, zato se v njej raztapljajo vsi plini, ki so v
zraku. Od teh sta za fiziologijo najbolj pomembna kisik in ogljikov dioksid,
ki se izmenjujeta pri dihanju. Slika 13.9 prikazuje odvisnost koncentracije
kisika v krvi v odvisnosti od delnega tlaka kisika v zraku. Iz slike vidi‑
mo, da bi se nam pri normalnih pogojih, ko je delni tlak kisika v zraku
21 kPa, v krvi raztopilo le malo kisika. Na srečo sta tu fiziki priskočili na
pomoč evolucija in biokemija in je glavni prenašalec kisika v krvi hemoglo‑
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Slika 13.8: A) Shematični prikaz zmanjševanja topnosti plinov s temperaturo. Če
lahko molekule plina z molekulami vode tvorijo vezi (se pravi, da je plin hidro‑
filen), je raztapljanje energijsko ugodno in pri nizki temperaturi bo raztopljeno
veliko plina. Z zviševanjem temperature se veča termično gibanje, zato lahko ve‑
dno več molekul zapusti raztopino in se preseli v plinasto stanje, s čimer se poveča
entropija. Topnostni koeficient se zato s temperaturo niža. B) Odvisnost topno‑
stnega koeficienta kisika v vodi od temperature (povzeto po [15]. Koeficient se s
temperaturo hitro zmanjšuje, pri telesni temperaturi se v vodi raztopi približno
30 % manj kisika kot pri sobni temperaturi.

bin, katerega koncentracija v krvi je nekaj več kot 2 mM, vsaka molekula
hemoglobina pa lahko nase veže 4 molekule kisika. Poleg tega je vezava ki‑
sika na hemoglobin ugodna in se hemoglobin s kisikom napolni (saturira)
že pri delnem tlaku kisika približno 15 kPa (to nam pride zelo prav, saj je
povprečni delni tlak kisika v alveolih nekaj manjši kot v zunanjem zraku).
Opozorimo naj še, da zaradi sorazmernosti med delnim tlakom plina nad
raztopino in njegovo koncentracijo v raztopini, v medicini tudi vsebnost
plinov v krvi pogosto merijo kar z ustreznim ravnovesnim delnim tlakom
plina oz. ponavadi kar v enoti mmHg.

Če je v raztopini veliko raztopljenega plina, se bo ob nenadnem padcu
tlaka nad raztopino začel plin v obliki mehurčkov izločati iz raztopine. V
vsakdanjem življenju ta pojav srečamo vsakič, ko odpremo steklenico z
gazirano pijačo, v medicini pa hitro izločanje plinov iz raztopine srečamo
pri dekompresijski bolezni, do katere lahko privede nepazljivo potapljanje z
jeklenko (primer 13.3).
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plin O2 N2 CO2

α [mM/100kPa] 1,26 0,64 33

Tabela 13.1: Topnostni koeficient za tri fiziološko pomembne pline pri temperaturi
25 °C (povzeto po [3]). Topnostni koeficient v prikazanih enotah (mM/100kPa)
nam pove, koliko milimolarna raztopina plina bi nastala v vodi, če bi bil delni
tlak plina nad raztopino enak normalnemu zračnemu tlaku (100kPa).
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Slika 13.9: Shematični prikaz odvisnosti koncentracije raztopljenega kisika od
njegovega delnega tlaka. Pri normalnem delnem tlaku kisika v zraku (približno
20kPa, točka a) se v krvni plazmi raztopi le malo kisika. V krvi se praktično ves
kisik prenaša vezan na hemoglobin, katerega vezavna krivulja ima značilno si‑
gmoidno obliko, nasiči pa se že pri delnem tlaku kisika približno 15kPa. Točki b
in c označujeta delna tlaka kisika v venski krvi in alveolih, iz česar vidimo, da se
koncentracija kisika v krvi v pljučih poveča za približno 2 mM. V medicini delne
tlake včasih merijo z enoto mmHg, zato je na sliki prikazana tudi os s to enoto.
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Primer 13.3: dekompresijska bolezen

Potapljač z jeklenko diha zrak pod tla‑
kom, ki je enak zunanjemu tlaku vode.
Na veliki globini zato vdihuje zrak pod
velikim tlakom, zaradi česar se mu v
krvi in tkivih raztopi več plina kot na
površini. Če se potapljač na veliki glo‑
bini zadržuje dalj časa, nato pa hitro
izplava na površje, se mu zunanji tlak
v hipu zelo zmanjša. Plini, ki so bili
pod visokim tlakom raztopljeni v krvi
in tkivih, se zato začnejo izločati v kri
v obliki mehurčkov (do podobne situ‑
acije pride, ko odpremo steklenico ga‑
zirane pijače), ki lahko zamašijo kapi‑
lare v organih in privedejo do t. i. de‑
kompresijske bolezni. Dekompresijski
bolezni se lahko izognemo s počasnim
dviganjem na površje, kar omogoči, da
se plini iz krvi in tkiv sprostijo počasi in
jih lahko sproti izdihamo skozi pljuča.

p0

p 	+	ρgh0

Izračunajmo, kolikšna prostornina dušika se izloči iz 1 dl krvi, če se potapljač hitro
dvigne s 40 m globine na površje!
Tlak vdihanega zraka iz jeklenke na globini 40 m je enak 500kPa, delni tlak dušika
pa je 78 % le‑tega. Koncentracija dušika v krvi na globini 40 m bo zato

c = αp = 0,64mM/100kPa · 0,78 · 500kPa = 2,5mM .

Pri tem smo za topnost dušika vzeli kar podatek iz tabele 13.1.
Ko se potapljač hitro vrne na površino, mu delni tlak dušika v pljučih pade na
78kPa, koncentracija v krvi raztopljenega dušika pa je zato lahko le še

c = 0,64mM/100kPa · 78kPa = 0,5mM .

Razlika koncentracij, 2mM, se v obliki mehurčkov izloči iz krvi. Iz 1 dl krvi se
torej izloči 0,2mmol dušika. Ker so na gladini približno standardni pogoji, lahko
prostornino izločenega dušika ocenimo kar iz podatka, da je prostornina enega
mola plina enaka približno 24 l. Iz 1 dl krvi se torej izloči približno 24 l · 0,0002 ≈
4,8ml dušika. Pri dušiku je dodatna težava tudi to, da se po hitrem dvigu izloča
tudi iz maščobnega tkiva, v katerem je tudi zelo dobro topen.
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MaFijski primer 13.1: Izpeljava Henryjevega zakona

Henryjev zakon (enačba 13.16) je intuitivno lahko razumeti: čim višji je tlak plina
nad raztopino, tj. čim več je molekul plina nad raztopino, tem več molekul plina se
raztopi v raztopini. Z našim znanjem termodinamike znamo ta zakon tudi izpeljati
ter ob tem še oceniti, od česa je odvisen topnostni koeficient α. Začnimo z zapisom
pogoja za ravnovesje: v ravnovesju mora biti kemijski potencial za molekule plina
v raztopini enak kot v plinu:

µr = µp .

Pri kemijskem potencialu moramo upoštevati entropijska prispevka za plin in raz‑
topino (enačbi 13.8 in 13.9), poleg tega pa tudi entalpijski prispevek – če lahko mo‑
lekula plina v vodi vzpostavi vezi, ima zato v vodi nižjo entalpijo kot v plinastem
stanju. Pogoj za ravnovesje lahko torej zapišemo kot:

RT ln
c

c0
−∆Hv = RT ln

p

p0
,

pri čemer je ∆Hv vezavna entalpija, ki se sprosti ob selitvi enega mola plina iz
plinastega stanja v raztopino (ob taki definiciji za hidrofilne pline velja ∆Hv > 0,
zato je pred vezavno entalpijo v zgornji enačbi predznak minus). To zvezo najprej
preuredimo tako, da člene z logaritmom zberemo na eni strani enačbe:

RT (ln
c

c0
− ln

p

p0
) = ∆Hv ,

nato pa faktor RT prestavimo na desno stran enačbe, logaritma združimo in obe
strani enačbe antilogaritmiramo:

cp0
c0p

= e
∆Hv
RT .

Ko izrazimo odvisnost koncentracije od tlaka, dobimo

c = p
c0
p0

e
∆Hv
RT .

iz česar vidimo, da sta c in p zares premo sorazmerna, kot to napoveduje Henryjev
zakon. Če to enačbo primerjamo s Henryjevim zakonom (c = αp), razberemo
vrednost topnostnega koeficienta

α =
c0
p0

e
∆Hv
RT .

Ker je vrednost ∆H pozitivna, vrednost topnostnega koeficienta z višanjem tem‑
perature pada, kar je za kisik prikazano na sliki 13.8B.
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13.7 Ravnovesna porazdelitev molekul in Boltz‑
mannov faktor

Na začetku poglavja o termodinamiki smo spoznali, da se molekule v pli‑
nu neprestano termično gibljejo, pri čemer pa nimajo vse enake hitrosti.
Neka molekula ima lahko najprej veliko hitrost, nato pa se v naslednjem
trenutku zaleti v sosedo in se pri tem skoraj ustavi. Z naključnim trka‑
njem si molekule tako neprestano izmenjujejo kinetično energijo. Hitrost
posamezne molekule se neprestano spreminja in je njena kinetična ener‑
gija le v povprečju po ekviparticijskem izreku enaka izrazu 3

2
kBT (enačba

11.2), v danem trenutku pa so hitrosti molekul porazdeljene po Maxwell‑
Boltzmannovi porazdelitvi (slika 11.2).

Naključnemu termičnemu trkanju in izmenjavi energije so seveda pod‑
vrženi vsi termodinamski sistemi, zato pri vseh velja, da njihovi sestavni
deli nimajo vseskozi konstantne energije. To je zelo pomembno za biolo‑
ške makromolekule, ki imajo lahko različne konformacije od katerih ima
lahko vsaka malo drugačno entalpijo. Če je v raztopini v ravnovesju veliko
število nekih makromolekul iste vrste, vse torej ne bodo imele iste konfor‑
macije – največ jih bo sicer v konformaciji z najmanjšo entalpijo, a zaradi
termičnega trkanja jih bo nekaj vedno tudi v konformacijah, ki entalpijsko
niso najbolj ugodna. Z zahtevnim računom je mogoče pokazati, da se v
ravnovesju molekule med različnimi možnimi stanji porazdelijo glede na
njihovo entalpijo po t. i. Boltzmannovi porazdelitvi, po kateri je verjetnost,
da nek sistem v ravnovesju najdemo s stanju i, sorazmerna

P (i) ∝ e−Hi/kBT , (13.17)

kjer jeHi entalpija v stanju i. Faktor iz zgornje enačbe imenujemo tudi Bol‑
tzmannov faktor. Primer izpeljave Boltzmannove porazdelitve za enostaven
sistem je prikazan v primeru 13.4.

Najbolj zasedena so torej vedno stanja z najnižjo entalpijo, zasedenost
stanj z višjimi entalpijami pa se manjša eksponentno. Če ima npr. protein
več možnih konformacij, bodo v raztopini z veliko proteini vedno prisotne
vse konformacije, ki pa bodo porazdeljene v skladu z Boltzmannovo po‑
razdelitvijo: največ proteinov bo v konformaciji z najnižjo entalpijo, to je v
konformaciji, v kateri je največ medmolekularnih vezi. Proteinov v konfor‑
macijah z višjimi entalpijami bo eksponentno vse manj (slika 13.10). Ker je
temperatura v imenovalcu eksponenta v Boltzmanovem faktorju, se z viša‑
njem temperature zasedenost različnih konformacij izenačuje, z nižanjem
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temperature pa se vse več proteinov zvije v stanje z najmanjšo entalpijo.
Intuitivno smo se s porazdelitvijo snovi med različnimi stanji srečali že pri
razmišljanju o ravnotežju med energijskimi in entropijskimi efekti pri pro‑
sti entalpiji (slika 13.3). Zapletene enačbe termodinamike nezavedno po‑
zna tudi vsak, ki si je kdaj skuhal jajce: z višanjem temperature se proteini
spontano razvijejo oz. koagulirajo.
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Slika 13.10: Shematični prikaz ravnovesne porazdelitve namišljenega proteina
po njegovih različnih konformacijah. Z modro krivuljo je shematično prikazana
vrednost entalpije v različnih konformacijah, z rdečo črtkano pa ravnovesni delež
molekul v določeni konformaciji. Največ molekul proteina bo v konformaciji z
najnižjo entalpijo. Verjetnost, da protein najdemo v konformaciji z višjo entalpijo,
se v skladu Boltzmannovo porazdelitvijo niža eksponentno z vrednostjo entalpi‑
je konformacije (enačba 13.17). Na sliki je privzeto, da se pri zvijanju proteinov
tvorijo vezi, zaradi česar ima zvit protein (konformacija C) nižjo entalpijo od raz‑
vitega (konformacija A). V praksi moramo k entalpiji sistema šteti tudi vezi med
molekulami vode, zato je entalpija proteina nižja takrat, ko v svojo notranjost skri‑
je hidrofobne ostanke aminokislin, s čimer omogoči, da se med molekulami vode
v okolici ustvari več vezi. Boltzmannova porazdelitev predpostavlja, da so vse
konformacije dostopne z termičnim gibanjem, kar pa v bioloških sistemih ni ve‑
dno uresničeno.

Primer 13.4: barometrska enačba in Boltzmanov faktor
Pri mehaniki smo v poglavju o hidrostatskem tlaku omenili, da se tlak v plinih z
višino ne spreminja linearno kot v vodi, ampak eksponentno, saj so plini v naspro‑
tju z vodo stisljivi. Oboroženi z znanjem termodinamike poskusimo to odvisnost
tudi izračunati. Kasneje bomo zelo podoben račun ponovili pri računanju elektro‑
kemijskega potenciala in membranskega potenciala pri celicah.
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Predstavljajmo si idealni plin v prostoru brez vetra in pri dani temperaturi (slika
A). Pri gladini morja (na višini z = 0) je tlak plina p0, njegov kemijski potencial pa
µ0. Na višini z je tlak plina p, kemijski potencial pa µ. V termodinamskem ravno‑
vesju je kemijski potencial plina povsod enak, µ = µ0 (če kemijski potencial plina
ne bi bil povsod enak, bi molekule plina tekle k nižjemu kemijskem potencialu in
sistem ne bi bil v ravnovesju). V nasprotju s situacijo v epruveti, v našem primeru
na entalpijo molekul vpliva tudi njihova potencialna energija. Spomnimo se, ka‑
ko je kemijski potencial plina odvisen od višine (enačba 13.7) ter od tlaka (enačba
13.8) in zapišimo, da je kemijski potencial na višini z enak kot kemijski potencial
na višini 0:

Mgz +RT ln
p

p0
= 0 . (13.18)

Pri tem prvi člen na levi strani enačbe opisuje odvisnost molarne potencialne ener‑
gije od višine (enačba 13.7), drugi člen pa je entropijski (enačba 13.8), poleg tega pa
smo privzeli, da je kemijski potencial na višini 0 kar enak 0. Ko zgornjo enačbo an‑
tilogaritmiramo, dobimo t. i. barometrsko formulo, po kateri tlaka zraka v odvisnosti
od višine pada eksponentno:

p = p0e
−Mgz/RT = p0e

−z/z0 , (13.19)

kjer je p0 tlak na višini 0, z0 = RT
Mg pa je značilna dolžina eksponentnega pada‑

nja, ki je sorazmerna temperaturi in obratno sorazmerna molekulski masi plina,
z0 = RT

Mg . Porazdelitev molekul plina po višini je torej v skladu z Boltzmanovo
porazdelitvijo, v eksponentu zgornje enačbe pa lahko prepoznamo Boltzmanov
faktor.
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Polna črta na sliki B prikazuje odvisnost padanja tlaka zraka od višine. Značilna
dolžina za zrak pri sobni temperaturi je približno z0 = 8500m, kar slučajno pri‑
bližno ustreza višini Mount Everesta. V vsakdanjem življenju padanja zračnega
tlaka z višino niti ne opazimo, saj je tlak pri npr. 5 m visokem stropu sobe praktič‑
no enak kot pri tleh (v tem primeru je razmerje tlakov p/p0 = e−5/8500 = 0,9994).
Po drugi strani je tlak na najvišji gori od tlaka pri gladini morja manjši ravno za
faktor e ≈ 2,7. Tlaka na višini Mount Everesta p ≈ e−1p0 ≈ 0,37p0) in Triglava
(p = e−2864/8500p0 ≈ 0,71p0) sta na sliki B označena s pikčastima črtama.
Značilna dolžina z0 je obratno sorazmerna molekulski masi plina, zato je za helij
približno sedem krat večja kot za zrak. Molekule helija bodo pri dani temperatu‑

182



Medicinska biofizika (oktober 2023)

ri bolj razmetane po prostoru kot molekule težjih plinov. Ker torej parcialni tlak
helija z višino pada počasneje, ga je na velikih višinah relativno več kot težjih pli‑
nov. Helij tako relativno tudi bolj »izpareva« iz atmosfere v vesolje, zaradi česar
bomo po nekaterih ocenah v nekaj sto letih porabili vso njegovo zalogo na Zemlji.
Padanje tlaka za helij, ki ima približno 7 krat manjšo maso od zraka, ter za oglji‑
kov dioksid, ki ima približno 1,5 krat večjo maso od zraka, je na sliki B prikazano
črtkasto.
Obnašanje značilne dolžine je v skladu z našim razumevanjem proste entalpije.
Sistem po eni strani teži k čim nižji energiji, po drugi k čim višji entropiji, tem‑
peratura sistema pa to ravnotežje uravnava. Pri nizki temperaturi je entropijski
člen majhen in sistem bo najnižjo G dosegel v stanju s čim nižjo entalpijo. Pri viso‑
ki temperaturi bo člen TS prevladal nad H in sistem bo najnižjo G dosegel tako,
da se bo premaknil proti stanju s čim večjo entropijo. Nižja, kot bo temperatura,
bolj bodo torej molekule plina v prostoru »padle na tla,« oziroma krajša bo značil‑
na dolžina z0. Višja, kot bo temperatura, bolj razmetane bodo molekule po vsem
prostoru in daljša bo z0.
Topljenci v raztopini se s stališča entropije obnašajo podobno kot plini, zato lahko
pričakujemo, da se bo koncentracija topljenca v epruveti ravno tako nižala ekspo‑
nentno z višino (slika C). Pri raztopinah moramo sicer upoštevati tudi vzgon, a vse‑
eno bo značilna dolžina Boltzmannovega faktorja približno sorazmerna RT/Mg.
V praksi je ponavadi značilna dolžina veliko daljša od velikosti epruvete in razlike
koncentracij niti ne opazimo. Drugače je, če s pomočjo ultracentrifuge pospešek
povečamo (pri tem ne smemo pozabiti, da pospešek v epruveti z oddaljenostjo od
osi centrifuge narašča, ar = rω2, primer 2.3). V epruveti ne nastane ostra kon‑
centracijska meja, ampak se koncentracija spreminja postopoma, v skladu z Boltz‑
mannovo porazdelitvijo (slika C). To moramo upoštevati pri merjenju sedimenta‑
cijskega ravnovesja pri ultracentrifugaciji raztopin proteinov, ki je ena najstarejših
metod za določanje molske mase proteinov oz. za sledenje njihovi oligomerizaciji.
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13.8 Ravnotežje v kemijskih reakcijah
Pred zaključkom poglavja o prosti entalpiji še dokončno povežimo fiziko
in kemijo. V ta namen si oglejmo, kako skozi oči termodinamike razloži‑
mo preproste kemijske reakcije. Kot primer si predstavljajmo preprosto
ravnotežno reakcijo pri kateri se a molekul vrste A spoji z b molekulami
vrste B, pri čemer nastane spojina C:

aA + bB C (13.20)

Entalpijsko je vezava med molekulami A in B ugodna, saj se ob tem ustva‑
rijo vezi. Zaradi termičnega gibanja se molekule naključno gibljejo po pro‑
storu in če se sreča prava kombinacija molekul, se vezi ustvarijo spontano.
Reakcija pa kljub temu ne poteče v celoti v desno, saj se med termičnim
gibanjem dogaja tudi, da molekule C zaradi trkov v sosede razpadajo na‑
zaj v A in B. S stališča entropije je vezava molekul A in B neugodna, saj se
ob nastajanju molekul C zmanjšuje entropija sistema (predpostavimo, da
gre za preproste molekule brez veliko notranjih prostostnih stopenj). Pri‑
čakujemo torej, da se z zviševanjem temperature ravnotežje reakcije seli v
levo.

Z našim znanjem termodinamike bi za zgornjo reakcijo znali izpeljati
tudi konstanto ravnotežja (MaFijski primer 13.2), s čimer bi vstopili na obšir‑
no in zanimivo področje kemije. Da se v njem ne izgubimo, se v naslednjem
poglavju vseeno raje vrnimo nazaj v fiziko.

MaFijski primer 13.2: Konstanta ravnotežja

Na ravnovesje preproste kemijske reakcije (enačba 13.20) poglejmo s stališča ke‑
mijskih potencialov. Sistem bo ravnovesje dosegel takrat, ko bo celotna prosta
entalpija sistema minimalna. Celotno entalpijo sistema zapišimo s pomočjo kemij‑
skih potencialov:

G = nAµA + nBµB + nCµC . (13.21)

Med potekom reakcije se spreminja število molov vsake od spojin, pri čemer iz
enačbe za reakcijo (enačba 13.20) sledi, da se ob povečanju količine snovi C za ∆n
molov, količina snovi A zmanjša za a‑krat toliko, ∆nA = −a∆n, količina snovi B
pa se zmanjša za b‑krat toliko, ∆nB = −b∆n. Med potekom reakcije se torej prosta
entalpija (enačba 13.21) spremeni za

∆G = −(aµA + bµB − µC)∆n . (13.22)

Reakcija bo torej tekla v desno (spojina C bo nastajala), če bo izraz v oklepaju po‑
zitiven. V ravnovesju bo prosta entalpija dosegla minimum in se ne bo več spre‑
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minjala, zato bo v ravnovesju izraz v oklepaju enak 0:

aµA + bµB − µC = 0 . (13.23)

V zgornji pogoj vstavimo izraze za kemijske potenciale snovi (spomnimo se izraza
za kemijski potencial topljenca, µ = µ0 +RT ln c

c0
, enačba 13.9):

a(µA0 +RT ln
cA
c0

) + b(µB0 +RT ln
cB
c0

)− (µC0 +RT ln
cC
c0

) = 0 , (13.24)

V kemijo bomo prestopili, če koncentracije zapišemo v trdih oklepajih (cA → [A] ...)
in se dogovorimo, da bomo vse koncentracije pisali v enoti mol/l (enote v logarit‑
mih nas torej ne bodo več skrbele in upoštevali bomo, da je takem zapisu c0 = 1 in
ga lahko izpustimo). Račun nadaljujemo tako, da člene s konstantami prestavimo
na desno stran enačbe:

−RT (ln[C]− a ln[A]− b ln[B]) = µC0 − aµA0 − bµB0 . (13.25)

Desna stran enačbe je konstantna in jo imenujemo standardna reakcijska molarna
prosta entalpija, ∆G

◦
r . Združimo še člene z logaritmi:

−RT ln
[C]

[A]a[B]b
= ∆G

◦
r , (13.26)

prestavimo člen z RT na drugo stran enačbe ter vse skupaj antilogaritmiramo in
končno dobimo znani kemijski opis ravnotežne reakcije:

[C]

[A]a[B]b
= e−

∆G◦
r

RT = K . (13.27)

KonstantoK imenujemo konstanta ravnotežja. Vrednost konstante ravnotežja je več
kot ena, če je standardna reakcijska molarna prosta entalpija negativna (to je, če se
ob vezavi A in B v C sprosti več vezavne entalpije, kot je izguba zaradi zmanjšanja
entropije). V tem primeru se z višanjem temperature konstanta ravnotežja manjša
in se ravnotežje reakcije seli v levo (sistem se seli proti stanju z večjo entropijo).
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Poglavje 14

Transport toplote in snovi

Termodinamiko bomo zaključili z opisom prevajanja toplote med telesi z
različno temperaturo in pretakanjem snovi med predelki. Zanimivo bo
spoznanje, da lahko zelo različne transportne pojave (transport toplote,
snovi, električnega naboja ...) vse opišemo na podoben način in da pri mno‑
gih takih pojavih velja Ohmov zakon, ki smo ga spoznali že v osnovni šoli
pri opisovanju električnega toka.

14.1 Prevajanje toplote
V vsakdanjem življenju se s prevajanjem toplote pogosto srečujemo, zato
imamo o njem dobro intuitivno predstavo. Zamislimo si na primer, da se
pozimi znajdemo v hladnem prostoru. Vsi vemo, da nas bo v takem pri‑
meru zeblo tem bolj, čim hladnejši je prostor. Nadalje vemo, da nas bodo
pred izgubo toplote varovala primerna oblačila – zeblo nas bo manj, če si
nadenemo čim debelejšo izolacijo iz čim boljšega toplotnega izolatorja (de‑
bela puhasta jakna bo boljša od tanke platnene). Nazadnje pa tudi vemo,
da se ob hudem mrazu intuitivno zvijemo v klobčič, s čimer si zmanjšamo
površino, preko katere izgubljamo toploto.

Izkaže se, da je naše intuitivno razumevanje prevajanja toplote povsem
v skladu z natančnim fizikalnim opisom. Količina, ki opisuje, koliko to‑
plote izgubljamo na časovno enoto, se imenuje toplotni tok, ki ga z enačbo
definiramo kot:
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P =
Q

t
. (14.1)

V skladu z zgornjim opisom je toplotni tok med dvema telesoma, ki sta
v toplotnem stiku, sorazmeren razliki temperatur med telesoma (∆T ) in
površini toplotnega stika (S) ter obratno sorazmeren debelini izolacije med
telesoma (L), na toplotni tok pa vpliva tudi, iz katere snovi je izolacija. Velja
torej:

P =
λS

L
∆T (14.2)

pri čemer smo z λ označili toplotno prevodnost snovi, iz katere je narejena
izolacija (za to lastnost se uporablja tudi izraz koeficient toplotne prevodnosti).
Čim boljši toplotni izolator je snov, tem manjša je vrednost λ. Vrednosti to‑
plotne prevodnosti za nekatere tipične materiale so navedene v tabeli 14.1.
V tabeli vidimo, da je zrak zares odličen toplotni izolator, več kot 20‑krat
boljši od vode. Dober toplotni izolator je tudi prazen prostor (vakuum),
saj se v njem toplota s pomočjo termičnega gibanja molekul sploh ne more
prenašati. Kasneje bomo v poglavju o elektromagnetnem valovanju vide‑
li, da se lahko toplota preko vakuuma vseeno prenaša v obliki termičnega
sevanja.

snov aluminij voda mišica maščoba les volna zrak

λ [W/mK] 240 0,6 0,4 0,2 0,15 0,04 0,026

Tabela 14.1: Okvirne vrednosti toplotne prevodnosti nekaterih snovi (povzeto po
[16] in [17]). Zrak je odličen toplotni izolator. Toplotna prevodnost telesnih tkiv je
ponavadi sorazmerna njihovi vsebnosti vode in je torej malo manjša od toplotne
prevodnosti vode. Maščobna tkiva so relativno dober izolator. V živih tkivih je
toplotna prevodnost večja od navedene, saj k njej prispeva tudi prenos toplote s
pretakanjem krvi.

Enačba 14.2 velja v stacionarnem primeru, tj. če se temperatura teles v
toplotnem stiku ne spreminja. V takem primeru se tudi toplotni tok s ča‑
som ne spreminja, poleg tega pa se temperatura v izolaciji med telesoma
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spreminja kar linearno z razdaljo od enega do drugega telesa (slika 14.1).
Za topla telesa v hladnem okolju je dolgotrajnejše stacionarno stanje mo‑
žno le, če se v njih neprestano sprošča nova toplota, ki nadomešča odda‑
no. Ko si želimo pozimi prostor ogreti na določeno temperaturo, mora biti
v njem izvor toplote z močjo, ki je enaka toplotnemu toku, ki se izgublja
preko sten prostora. Podobno moramo toplokrvna bitja uravnavati svojo
stalno telesno temperaturo z neprestanim uravnovešanjem oddane toplote
in toplote, ki jo v telesu proizvedemo z metabolizmom.

ΔT

T

T1

T1

T2

x

L

S

λ

T2

Slika 14.1: Toplotni tok med telesom z visoko temperaturo (T1) in telesom z niz‑
ko temperaturo (T2) je sorazmeren razliki temperatur (∆T = T1 − T2), površini
toplotnega stika (S), ter toplotni prevodnosti stika (λ), ter obratno sorazmeren de‑
belini izolacije (L) . Če se temperaturi teles s časom ne spreminjata, temperatura
v izolaciji linearno pada od T1 do T2.

14.2 Transport snovi z difuzijo
V prejšnjem razdelku smo opisali, kako razlika v temperaturah povzro‑
či toplotni tok, ki teče od toplejšega proti hladnejšemu telesu. Spomnimo
se, da je na molekularnem nivoju prehajanje toplote povezano s termičnim
gibanjem molekul, ki si z naključnim medsebojnim trkanjem izmenjujejo
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energijo. Z naključnim trkanjem med molekulami je povezana tudi difu‑
zija snovi v raztopinah in plinih (o njej smo govorili že v razdelku 10.4)
in izkaže se, da pri difuziji veljajo podobne zakonitosti kot pri prevaja‑
nju toplote, le da pri difuziji govorimo o snovnem (masnem) toku, ki ga
poganja razlika v termodinamskih potencialih oz. koncentracijska razlika
(spomnimo se, da je v raztopinah je termodinamski potencial v prvi vrsti
odvisen od koncentracije snovi). Analogno z enačbo 14.2 lahko za staci‑
onarni pretok snovi med dvema predelkoma različnima koncentracijama
snovi zapišemo

Φn =
DS

L
∆c , (14.3)

kjer snovni tok pove, koliko molov snovi se pretoči v določenem času (Φn =
n/t , enota je mol/s), S je površina preko katere teče snov, L je razdalja po
kateri teče snov,D je difuzijska konstanta snovi, ki smo jo srečali že v enač‑
bi 10.3, ∆c pa je razlika koncentracij med predelkoma (v enoti mol/l). Di‑
fuzijska konstanta torej pri pretoku snovi igra podobno vlogo kot termična
prevodnost pri toplotnem toku ‑ čim manjša je difuzijska konstanta, tem
manjši bo snovni tok, do katerega pride zaradi razlike v koncentracijah.

14.3 Transport preko bioloških membran
V bioloških sistemih se pomemben del transporta snovi vrši preko mem‑
bran, katerih glavna vloga je razmejevanje različnih funkcionalnih predel‑
kov in regulacija transporta molekul med njimi. Celične membrane so zelo
tanke (L je zelo majhen, le nekaj večji od velikosti povprečne molekule),
hkrati pa je v njih difuzija zapletena in jo težko opišemo le s preprosto di‑
fuzijsko konstanto. Za opisovanje difuzije snovi preko membrane se zato
ponavadi ne uporablja enačbe 14.3, temveč malo drugačen zapis:

Φn = PS∆c , (14.4)

kjer je P prepustnost (permeabilnost) membrane, ki ima enoto m/s (kljub te‑
mu, da ima prepustnost enako enoto kot hitrost, gre za dve povsem različni
količini). Difuzija preko membrane je torej odvisna od razlike koncentra‑
cij, površine membrane in njene prepustnosti. Prepustnost membrane je
lahko različna za različne snovi, poleg tega pa jo lahko celice z različnimi
mehanizmi tudi regulirajo – med nastankom akcijskega potenciala se npr.
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prepustnost membrane za kalijeve in natrijeve ione zelo spremeni. Kasne‑
je bomo pri obravnavanju električnih pojavov spoznali, da gonilna sila za
difuzijo ionov preko membrane ni le razlika njihovih koncentracij temveč
tudi membranski potencial (električna napetost med eno in drugo stranjo
membrane pri celicah).

Omenimo naj še, da v celicah poleg pasivne difuzije, ki jo opisujemo
z enačbo 14.4, obstajata še dva načina transporta snovi preko membrane.
Prvi je t. i. olajšani transport, pri katerem prehajanje snovi preko membra‑
ne poteka s pomočjo različnih membranskih proteinov, t. i. prenašalcev.
Olajšani transport je tudi pasiven (snovni tok teče v smer proti nižji kon‑
centraciji), a ni odvisen le od razlike koncentracij, temveč tudi od dosto‑
pnosti prostih prenašalcev. Z višanjem koncentracijske razlike se tak tran‑
sport saturira (tj. doseže vrednost, preko katere ne more), saj v membrani
zmanjka prostih prenašalcev. Druga pomembna vrsta prekomembranske‑
ga transporta je t. i. aktivni transport, pri katerem celice z različnimi meha‑
nizmi snov črpajo v smeri proti večji koncentraciji, a za to porabljajo ener‑
gijo (največkrat v obliki molekul ATP). Znan primer takega transporta so
natrij‑kalijeve črpalke, ki vzdržujejo prekomembranski gradient teh ionov.

14.4 Enoten pogled na transportne pojave,
Ohmov zakon

Pogled na opis toplotnega toka (enačba 14.2) in opis toka snovi (enačbi 14.3
in 14.4) razkrije, da so te enačbe podobne Ohmovemu zakonu iz elektrike,
pa tudi Hagen–Poiseuillevem zakonu, ki smo ga srečali pri pretakanju vi‑
skoznih tekočin (enačbi 9.11 in 9.12). V vseh primerih namreč velja, da je
tok (električni, toplotni, prostorninski ...) sorazmeren količini, ki tok poga‑
nja (električna napetost, razlika temperatur, razlika tlakov ...), ter obratno
sorazmeren uporu. Ohmov zakon za toplotni tok in tok snovi lahko torej
zapišemo

P =
∆T

Rt

in Φn =
∆c

Rd

, (14.5)

kjer je Rt toplotni upor:
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Rt =
L

λS
, (14.6)

upor za difuzijski tok snovi preko membrane pa je

Rd =
1

PS
. (14.7)

Analogija z Ohmovim zakonom nam pomaga, ko tokovi ne tečejo po
homogeni snovi, temveč tečejo vzporedno ali zaporedno po različnih sno‑
veh. V takih primerih lahko namreč brez težav izračunamo skupni upor
sistema: upor zaporednih upornikov se sešteva (za skupni upor velja: RS =
R1+R2+ ...), upor vzporednih uporov pa izračunamo iz seštevka obratnih
vrednosti (za skupni upor velja: 1/RS = 1/R1 + 1/R2 + ...). Poleg tega v
vseh naštetih primerih velja, da se celotna količina toka ohranja (niti elek‑
trični naboj niti toplota niti snov ne morejo izginiti ali nastati iz nič), zato
skozi zaporedno vezana upornika teče enak tok (slika 14.2).

P1

P2

P

R1

R1

P P

PP
P1

P2

R1

R1

R2

R2

A

B

ΔT

ΔT

R2

R2

Slika 14.2: Seštevanje uporov pri toplotnem toku. A) Če sta med toplim in hla‑
dnim telesom dve plasti različne izolacije, toplotni tok teče najprej skozi eno in
nato še skozi drugo plast. Gre torej za »zaporedno vezavo« izolaciji in velja
P = ∆T/RS , kjer je skupni upor obeh izolacij RS = R1 + R2. B) Če sta izola‑
ciji ena zraven druge, toplotni tok skozi njiju teče vzporedno. Izolaciji sta torej
»vezani vzporedno,« zato velja P = P1 + P2 ter P = ∆T/RS , kjer skupni upor
izračunamo iz 1/RS = 1/R1 + 1/R2.
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14.5 Približevanje ravnovesju

Če v hladnem okolju vroče telo ne proizvaja svoje toplote, se ohlaja do‑
kler ne doseže ravnovesja oz. temperature okolice. Na začetku je razlika
temperatur med telesom in okolico največja, zato telo toploto takrat izgu‑
blja najhitreje. Med ohlajanjem se temperaturna razlika manjša, zato telo
izgublja vedno manj toplote (enačba 14.2) in se tudi ohlaja vse počasneje.
Iz tega lahko sklepamo, da je ohlajevanje proces, ki je eksponentno odvi‑
sen od časa: na začetku poteka hitro, nato pa vse počasneje (slika 14.3A).
Podobno velja tudi za segrevanje hladnega telesa na temperaturo okolice
(slika 14.3B). Podrobnejši račun pokaže (MaFijski primer 14.1), da za pri‑
bliževanje ravnovesju velja

∆T (t) = ∆T0e
−t/τ , (14.8)

pri čemer je ∆T absolutna vrednost temperaturne razlike med telesom in
okolico, τ pa je značilni čas ohlajanja oz. ogrevanja. Opozorimo naj, da∆T
v tej enačbi predstavlja trenutno razliko temperatur med telesom in okolico
in ima torej drugačen pomen kot∆T v enačbah 11.5 in 11.6, kjer predstavlja
spremembo temperature zaradi izmenjevanja toplote.

T

Tz

ΔT ΔT

Tz
To

To

T

t t

A B

Slika 14.3: Pri ohlajanju telesa v hladnem okolju (A) oz. segrevanju telesa v vro‑
čem okolju (B) se temperatura telesa od začetne temperature telesa (Tz) eksponen‑
tno približuje temperaturi okolice (To). V obeh primerih lahko absolutno vrednost
temperaturne razlike med telesom in okolico opišemo z eksponentno padajočo
funkcijo (enačba 14.8).
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Značilni čas eksponentnega približevanja temperaturi okolice (τ ) je enak
produktu toplotne kapacitete telesa ter upornosti izolacije:

τ = RtC . (14.9)

Enačba se ujema z našo predstavo o ohlajanju oz. segrevanju teles: pri‑
bliževanje končni temperaturi je tem počasnejše (τ je tem večji), čim boljša
je izolacija in čim večjo toplotno kapaciteto ima telo. Toplotna kapaciteta
je namreč povezana s količino toplote, ki jo mora telo oddati, da se ohladi
(enačba 11.5, ki smo jo spoznali pri kalorimetriji) – vsi si dobro predsta‑
vljamo, da imajo majhna telesa malo toplotno kapaciteto in se bodo zato
ohlajala hitreje od velikih teles.

Podobno kot za toplotni tok velja tudi za pretok snovi. Če koncentracija
snovi v nekem predelku ni enaka koncentraciji snovi v okolici in se snov z
okolico lahko izmenjuje, se bo na začetku izmenjevala hitro, potem pa ve‑
dno počasneje, saj se bo s časom manjšala razlika koncentracij, ki tok snovi
poganja. Tudi tu gre torej za eksponenten proces. Podrobnejši račun poka‑
že, da se razlika koncentracij med predelkom in okolico s časom spreminja
po enačbi

∆c(t) = ∆c0e
−t/τ , (14.10)

pri čemer je značilni čas približevanja ravnovesju enak

τ = RdV . (14.11)

V tem primeru je torej približevanje tem počasnejše, čim večji je difuzij‑
ski upor in čim večja je prostornina predelka. Prostornina predelka tu igra
podobno vlogo kot toplotna kapaciteta pri izmenjevanju toplote – obe opi‑
sujeta, kako velika zaloga (toplote oz. snovi) se mora med približevanjem
ravnovesju izmenjati z okolico.

MaFijski primer 14.1: približevanje ravnovesju

Pokažimo, da je približevanje ravnovesju eksponenten proces, ki ga lahko opišemo
z enačbama 14.8 in 14.9. Račun bomo naredili le za izmenjevanje toplote, analogen
primer za izmenjevanje snovi lahko bralec za vajo opravi sam.
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Pred začetkom računanja razmislimo, kaj se dogaja z vročim telesom z začetno
temperaturo Tz , ki je v hladni okolici s temperaturo To. Zaradi razlike temperatur
telo izgublja toploto ter se zaradi tega ohlaja. Okolica je v primerjavi s telesom zelo
velika, zato se zaradi prejete toplota ne bo ogrela in bo temperatura To konstantna.
Temperaturna razlika se s časom manjša, zato se manjšal tudi toplotni tok, ki ga
telo izgublja (količina toplote na sekundo) in posledično se bo telo ohlajevalo ve‑
dno počasneje. Ker temperaturna razlika vpliva na velikost toplotnega toka, ta pa
vpliva nazaj na hitrost zmanjševanja temperaturne razlike, račun ne bo enostaven.
Pa začnimo.
Zaradi izgubljanja toplote se telesu temperatura niža po enačbi 11.5:

Q = C∆T , (14.12)

pri čemer pa temperatura vpliva nazaj na hitrost izgubljanja toplote, kar opisuje
Ohmov zakon (enačbi 14.2 in 14.6):

P =
Q

t
= −T − To

Rt
, (14.13)

pri čemer smo s T označili trenutno temperaturo telesa, minus pa je v enačbi za‑
to, ker je pri pozitivni temperaturni razliki toplotni tok negativen (telo toploto iz‑
gublja). Zgornji enačbi sta torej medsebojno sklopljeni, poleg tega pa se količina
toplote, ki jo telo izgublja, vseskozi manjša. Pri reševanju moramo enačbi zato
prepisati v diferencialno obliko, ki ne predpostavlja konstantnega toplotnega to‑
ka. Upoštevamo torej, da telo v vsakem kratkem času (dt) izgubi le malo toplote
(dQ), kar povzroči majhno znižanje temperature telesa (dT ), toplotni tok v tem
kratkem času pa je P = dQ/dt. Enačbi se tako zapišeta kot

dQ = C dT in
dQ
dt

= −T − To

Rt
(14.14)

Enačbi lahko sedaj združimo, pri čemer pa zaradi lažjega računanja najprej vpelji‑
mo novo spremenljivko za razliko temperatur in njeno majhno spremembo:

u = T − To in du = dT . (14.15)

Pri tem smo upoštevali, da je To konstantna in je zato majhna sprememba u kar
enaka majhni spremembi T . Če združimo enačbi 14.14, tako dobimo

C
du
dt

= − 1

R
u . (14.16)

Iz te enačbe je jasno vidno, da je hitrost spreminjanja temperaturne razlike soraz‑
merna temperaturni razliki in izkušeni matematiki v taki enačbi že vidijo ekspo‑
nentno odvisnost. Do tega rezultata pridemo tako, da na eno stran enačbe zapi‑
šemo vse člene, ki vsebujejo u, na drugo pa vse člene s t, hkrati pa na eno stran
postavimo tudi vse konstante:

−RC
du
u

= dt . (14.17)
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To enačbo sedaj integriramo od časa 0 (temperaturno razliko ob tem času zapišimo
z u0) do poljubnega časa t (temperaturno razliko ob tem času zapišimo kot u(t)):

−RC

∫ u(t)

u0

du
u

=

∫ t

0

dt . (14.18)

Rezultat integracije je

−RC (lnu(t)− lnu0) = t , (14.19)

oziroma
−RC ln

u(t)

u0
= t . (14.20)

Nazadnje še prestavimo produkt −RC na drugo stran enačbe in enačbo antiloga‑
ritmiramo:

u(t) = u0e
−t/RC . (14.21)

Če upoštevamo še u = ∆T in τ = RC, dobimo ravno enačbi 14.8 in 14.9. Še
enkrat opozorimo, da ∆T v tej enačbi predstavlja trenutno razliko temperatur med
telesom in okolico in je torej nekaj drugega kot ∆T v enačbi 14.14, kjer predstavlja
spremembo temperature zaradi izmenjevanja toplote.
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Poglavje 15

Osnove elektrostatike

15.1 Električni naboj v bioloških sistemih
Poleg mase je električni naboj ena od najpomembnejših lastnosti osnovnih
gradnikov narave. V nasprotju z maso je lahko naboj tudi negativen – med
osnovnimi delci ima npr. elektron negativen naboj, proton pozitivnega,
nevtron pa je nevtralen oz. nima naboja. Po absolutni vrednosti sta naboja
elektrona in protona enaka t. i. osnovnemu naboju, e0 = 1,6 · 10−19 As. Enota
za naboj je amper‑sekunda, pri čemer je enota amper (A) ena od osnovnih
enot pri elektriki (kasneje bomo videli, da z njo merimo električno tok).
Včasih se uporablja tudi enota coulomb (slovensko kulon), pri čemer velja
1C = 1As.

Enaki naboji se med seboj odbijajo in nasprotni privlačijo, vendar v
vsakdanjem življenju te sile redko opazimo, saj je snov ponavadi sestavlje‑
na iz enakega števila pozitivnih in negativnih nabojev ter je zato navzven
električno nevtralna. Povsem drugače je v svetu molekul, saj tam vlada
ravno električna sila med naboji, ki na majhni skali ne morejo biti povsem
enakomerno porazdeljeni. Prav zaradi električne sile so elektroni in pro‑
toni ujeti v atome, električna sila drži skupaj atome v molekulah in zaradi
električne sile se molekule združujejo v snovi.

Električno nabiti atomi in molekule se imenujejo ioni: če je v njih prese‑
žek elektronov nad protoni, se imenujejo anioni, v nasprotnem primeru pa
jih imenujemo kationi. Kuhinjska sol npr. v vodi disociira v natrijev kation
(Na+) in klorov anion (Cl−). Mnoge molekule so sicer električno nevtral‑
ne, a je naboj v njih razporejen nesimetrično in so zato polarne. Taka je npr.
molekula vode, pri kateri je stran s kisikom malo bolj negativna od strani z
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vodikoma (slika 15.1A). Poseben primer takih molekul so t. i. ioni‑dvojčki
oz. zwitterioni, pri katerih je ena stran nabita z enim, druga pa z naspro‑
tnim nabojem. Električni naboj označimo z e, število osnovnih nabojev na
nekem delcu pa z valenco iona Z (e = Ze0). Elektron in Cl− imata tako
Z = −1, nevtron Z = 0, proton in Na+ imata Z = 1, ion magnezija Mg2+

pa Z = 2.
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Slika 15.1: Shematski prikaz razporeditve naboja A) na molekuli vode [18] in B)
na proteinu hemoglobinu pri nevtralni vrednosti pH [19]. Z modro barvo so pri‑
kazani pozitivno nabiti deli, z rdečo pa negativno nabiti. C) Odvisnost naboja na
proteinu od pH raztopine za hemoglobin (trikotniki) in serumski albumin (BSA,
krogci). Izoelektrična točka hemoglobina je približno 6,8, BSA pa približno 4,7
[20].

Na bioloških molekulah je lahko razporeditev naboja še mnogo bolj za‑
pletena, saj so te molekule velike in imajo lahko veliko nabitih ali polarnih
skupin (slika 15.1B). Poleg tega lahko mnoge biološke molekule izmenjuje‑
jo protone (tj. vodikove ione H+) z raztopino, zato je njihov naboj odvisen
od pH raztopine. Spomnimo se namreč, da je pH raztopine merilo za kon‑
centracijo vodikovih ionov v raztopini:

197



Medicinska biofizika (oktober 2023)

pH = − log cH+ (15.1)

pri čemer moramo v zgornjo enačbo vstaviti molarno koncentracijo.
Pri proteinih izmenjujejo protone z raztopino predvsem proste amino‑

( NH +
3 NH2 + H +

(aq)) in karboksilne skupine ( COOH COO– +
H +

(aq)). Pri DNA je nosilka naboja fosfatna skupina v verigi (PO –
4 ), zaradi

česar ima pri nevtralnem pH vsak bazni par dva negativna naboja.
Pri nizkem pH je v raztopini veliko protonov, zaradi česar se jih ne‑

kaj preseli tudi na ustrezne skupine na makromolekulah, ki zato postanejo
pozitivno nabite. Obratno se zgodi pri visokem pH, pri katerem je kon‑
centracija protonov v raztopini majhna – protoni se iz molekul preselijo v
raztopino, molekule pa ostanejo negativno nabite. Naboj na makromole‑
kulah zato ponavadi pada z naraščanjem pH, točko, v kateri je naboj na
molekuli enak nič, pa imenujemo izoelektrična točka (slika 15.1C). DNA je
npr. pri nevtralnem pH negativno nabita, njena izoelektrična točka pa je
približno pri pH 5. Tako ali drugače so nabite mnoge makromolekule, na‑
bita je npr. tudi molekula fosfolipida fosfatidilserin (PS), katere glava ima
pri nevtralnih pH en negativni naboj (njena izoelektrična točka je pri pri‑
bližno pH 1).

15.2 Sila med točkastima nabojema
Ena od osnovnih lastnosti električnih nabojev je, da se med seboj privla‑
čijo oz. odbijajo z električno silo. Električno silo med dvema nabojema v
praznem prostoru opisuje znameniti Coulombov zakon

Fe =
e1e2

4πϵ0r2
, (15.2)

kjer je r razdalja med nabojema e1 in e2, ϵ0 pa je influenčna konstanta
(ϵ0 = 8,85 · 10−12 As/Vm). Naboja z enakim predznakom se odbijata, z
nasprotnim pa privlačita.

Če je v prostoru več nabojev, Coulombova sila deluje v vsakem paru
nabojev, pri čemer prisotnost ostalih nabojev ne vpliva na velikost sile v
enem paru. Coulombova sila je torej aditivna: sila na izbran naboj je vso‑
ta sil vseh ostalih nabojev v prostoru na ta naboj. Če bi npr. želeli ugo‑
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toviti, kako se bo nabita makromolekula obnašala v bližini nabite celične
membrane, bi v principu to lahko izračunali s pomočjo enačbe 15.2. Za‑
radi velikega števila nabojev na membrani, s katerimi bi morali izračunati
Coulombovo silo, bi bil tak račun precej zahteven in ga v praksi ne mo‑
remo enostavno izvesti. Na srečo si lahko pri opisovanju električnih sil v
sistemih z velikim številom nabojev pomagamo s konceptom električnega
polja, ki ga bomo spoznali v prihodnjem razdelku.

15.3 Električno polje
Interakcije med nabitimi delci, ki jih sicer opisuje Coulombova sila (enačba
15.2), lahko zelo nazorno opisujemo tudi s pomočjo koncepta električnega
polja. Predstavljamo si namreč lahko, da vsak naboj v svoji okolici ustvarja
električno polje in da to električno polje nato s silo deluje na druge naboje.
Na prvi pogled se nam mogoče zdi, da je koncept polja nepotrebna kom‑
plikacija, a do konca poglavja bomo spoznali, da nam koncept polja zelo
olajša razumevanje mnogih električnih pojavov, nepogrešljiv pa je tudi pri
razumevanju magnetizma. V tem razdelku bomo električno polje opisa‑
li na primeru polja v okolici točkastega naboja, v nadaljevanju pa bomo
opisali še polje v drugih primerih.

Najprej se spomnimo poglavja pri mehaniki, v katerem smo pokazali,
da lahko na obnašanje masnih teles v gravitacijskem polju enakovredno
gledamo skozi oči gravitacijske sile ali gravitacijske potencialne energije.
Na hriboviti površini se žoga kotali proti dolini potencialne energije, pri
čemer je potencialna energija kar sorazmerna nadmorski višini, velikost
sile, ki žogo vleče v dolino, pa je sorazmerna strmini hriba (slika 4.2). Elek‑
trična sila je podobno kot sila teže tudi konservativna, zato lahko pri njej
uporabimo enak pristop (matematični zapis Coulombovega zakona je zelo
podoben zapisu gravitacijskega zakona).

Električno polje lahko tako opisujemo z električnim potencialom (φ), ki
je povezan z električno potencialno energijo, ali z jakostjo električnega polja
(E⃗), ki je povezana z električno silo1. Tudi električno polje si lahko predsta‑
vljamo kot hribovito pokrajino, v kateri pa »nadmorska višina« predstavlja
velikost električnega potenciala. Če v električno polje postavimo pozitivne
naboje, jih električna sila vleče proti najbližji dolini električnega potenciala.
Masa je lahko le pozitivna, zato se bodo vsa masna telesa vedno kotalila

1Za jakost električnega polja se uporablja tudi izraz električna poljska jakost.
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Slika 15.2: Električno polje v okolici točkastega naboja. A) Shematični prikaz
električnega potenciala v okolici pozitivnega in v okolici negativnega naboja. Po‑
zitivni naboj okoli sebe ustvari potencialni vrh, negativni pa jamo. Po analogiji z
gravitacijo, si lahko tudi vrednost električnega potenciala predstavljamo kot nad‑
morsko višino na potencialnih hribih in dolinah. Z oranžnimi črtami so označene
ekvipotencialne črte, tj. črte ki povezujejo točke z enakim potencialom (višino).
B) Prikaz električnih silnic za oba primera. Silnice vedno kažejo navzdol po po‑
tencialnem bregu in so vedno pravokotne na ekvipotencialne črte, ki so prikazane
z oranžnimi črtkanimi črtami (sliki B sta pogleda s ptičje perspektive na sliki A).
Silnice električnega polja nakazujejo smer sile na nek pozitivni naboj, ki bi ga po‑
stavili v polje, in torej kažejo stran od pozitivnega oz. proti negativnem naboju.
Električno polje torej pozitivne naboje vleče proti dnu potencialne jame, negativ‑
ne pa proti vrhu. Velikost sile lahko po analogiji z gravitacijo razberemo kar iz
strmine potencialnega hriba – večja, kot je strmina, večja je sila. Opazimo še, da je
velikost sile sorazmerna gostoti silnic.

le proti dolini. Električni naboj je lahko tudi negativen, zato pri električ‑
nem polju velja, da proti dolinam električnega potenciala vleče pozitivne
naboje, negativne naboje pa vleče proti vrhovom.

Izvor električnega polja so električni naboji, podobno kot so izvor gravi‑
tacijskega polja masna telesa. Za začetek si poglejmo, kako je videti najeno‑
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stavnejši primer – električno polje v okolici točkastega naboja (slika 15.2).
Predstavljamo si lahko, da negativni naboj v prostoru okoli sebe ustvari
potencialno jamo, pozitivni naboj pa potencialni vrh (slika 15.2A). Če v to
polje postavimo nek drug naboj, bo sila na ta drugi naboj sorazmerna str‑
mini potencialnega brega, pri čemer bo sila pozitivne naboje vlekla proti
nižjemu potencialu, negativne pa proti višjemu potencialu. Tudi v opisu s
poljem se torej enaki naboji odbijajo, nasprotni pa privlačijo.

Jakost električnega polja si lahko lepo predstavljamo s pomočjo silnic, ki
prikazujejo, kakšna sila bi delovala na nek pozitivni naboj, ki bi ga postavi‑
li v polje. Silnice tako vedno kažejo proti nižjemu električnega potenciala.
Na sliki 15.2B so predstavljene silnice v okolici točkastega naboja. Silnice
kažejo torej stran od pozitivnega naboja in proti negativnemu naboju. V
splošnem velja, da sila na pozitivni naboj, kaže v smeri silnic, sila na nega‑
tivni naboj pa ravno v nasprotni smeri. Velikost sile v neki točki prostora
je sorazmerna gostoti silnic v tisti točki: silnice, ki se širijo iz točkastega
naboja, z oddaljenostjo od njega postajajo vedno redkejše, kar se ujema z
enačbo za Coulombovo silo (enačba 15.2), ki pravi, da sila okoli točkastega
naboja pada s kvadratom razdalje.

Če se v električnem polju premikamo vzdolž silnic, se nam torej spre‑
minja potencial, če pa se premikamo pravokotno na silnice, ostajamo vse‑
skozi na istem potencialu. Črte, ki povezujejo točke z istim potencialom,
imenujemo ekvipotencialne črte in so analogne plastnicam (izohipsam), tj.
črtam, ki na zemljevidih povezujejo točke z isto nadmorsko višino.

Opis električnega polja nadgradimo še z enačbam:

• Električna sila, ki jo čuti naboj v električnem polju, je sorazmerna ve‑
likosti naboja in jakosti električnega polja:

F⃗e = eE⃗ . (15.3)

Jakost električnega polja v neki točki prostora je torej vektor, ki kaže
v isto smer, kot kaže električna sila na pozitivni naboj v tisti točki.
Sila na negativni naboj kaže v nasprotni smeri kot silnice.

• Električna sila je sorazmerna strmini električnega potenciala, tj. od‑
vodu potenciala po prostoru (tj. gradientu potenciala). Če se poten‑
cial spreminja le v smeri x torej velja:

E = −∆φ

∆x
. (15.4)
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Minus v zgornji enačbi nakazuje, da silnice kažejo v smer proti niž‑
jemu potencialu.

• Zgornjo zvezo lahko tudi obrnemo: če se vzdolž silnice premaknemo
za razdaljo ∆x, se nam potencial spremeni za

∆φ = −E∆x . (15.5)

Minus v enačbi spet pomeni, da se med premikanjem v smeri silnic
potencial niža. Če se premikamo pravokotno na silnice, se nam po‑
tencial ne spremenija in se gibljemo po ekvipotencialni črti.

• Na naboj v polju deluje sila, zato je vsako premikanje naboja vzpo‑
redno s silnicami povezano z delom A = F∆x, to delo pa je poveza‑
no s spremembo električne potencialne energije. Na osnovi zgornjih
enačb lahko zaključimo, da je električna potencialna energija naboja
e v potencialu φ

We = eφ . (15.6)

• Končno je nastopil čas, da vpeljemo eno od najbolj osnovnih električ‑
nih količin: električna napetost med dvema točkama v prostoru je
potencialna razlika med tema dvema točkama:

U = ∆φ . (15.7)

Napetost torej igra vlogo višinske razlike pri gravitacijskem poten‑
cialu in jo v praksi srečamo večkrat kot absolutno vrednost elektri‑
čnega potenciala. Slednja je pravzaprav stvar dogovora, napetost pa
je enolično merljiva količina.

• Če zadnji dve enačbi združimo, ugotovimo, da se naboju, ki prepo‑
tuje napetost U , energija spremeni ravno za

∆We = eU . (15.8)

S to enačbo je povezana enota za energijo eV, ki opisuje spremembo
električne energije osnovnega naboja, ki prepotuje napetost 1V. Velja
kar 1 eV = e0 · 1V = 1,6 · 10−19 As · 1V = 1,6 · 10−19 J. To enoto
uporabljamo za opisovanje energij v svetu atomov, saj so le‑te ravno
reda velikosti eV in je zato tam enota J nepraktična.
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Oboroženi z novimi definicijami lahko zapišemo enačbi za jakost elek‑
tričnega polja in električni potencial v okolici točkastega naboja. S primer‑
javo enačb 15.2 in 15.3 ugotovimo, da točkasti naboj e okoli sebe ustvarja
električno polje z jakostjo

E =
e

4πϵ0r2
, (15.9)

kjer je r razdalja do tega naboja (izraz za Coulombovo silo dobimo, če si
predstavljamo, da naboj e2 okoli sebe ustvarja polje, ki s silo deluje na naboj
e1, ter združimo enačbi 15.3 in 15.9).

S pomočjo zveze, da je jakost električnega polja enaka odvodu poten‑
ciala po kraju, lahko tudi z našim znanjem matematike uganemo izraz za
višino električnega potenciala v okolici točkastega naboja:

φ =
e

4πϵ0r
. (15.10)

Vsak lahko preveri, da z odvajanjem enačbe 15.10 po r dobimo ravno enač‑
bo 15.9 (minus, ki se pojavi pri odvajanju, se izniči z minusom iz enačbe
15.4). Jakost električnega polja torej pada s kvadratom oddaljenosti od toč‑
kastega naboja, električni potencial pa obratno sorazmerno z oddaljeno‑
stjo.

15.4 Dipol
Polarne molekule so navzven sicer električno nevtralne, a zaradi nesime‑
trično razporejenega naboja kljub temu v svoji okolici ustvarjajo električno
polje. Najpreprostejša razporeditev naboja je t. i. električni dipol, pri kate‑
rem sta blizu skupaj pozitivni in negativni naboj, ki sta po velikosti enaka.
Kasneje bomo videli, da se zaradi električne aktivnosti srca tudi okoli njega
ustvarja dipolno električno polje in da nam poznavanje takega polja poma‑
ga pri razumevanju EKG.

Enačba, ki opisuje električno polje v okolici dipola, je zapletena, a si to
polje lahko grafično vseeno nazorno predstavljamo. Če pozitivni in nega‑
tivni naboj iz slike 15.2 postavimo blizu skupaj, dobimo sosednja vrh in
jamo, kot ju prikazuje slika 15.3A. Silnice polja dipola torej »izvirajo« v po‑
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zitivnem naboju in »poniknejo« v negativnem. Kako velik je dipol in nje‑
govo usmerjenost opisujemo z vektorjem električnega dipola, ki je definiran
kot produkt velikosti nabojev v dipolu in razdalje med njima:

p⃗e = er⃗ , (15.11)

pri čemer vektor dipola po dogovoru kaže od negativnega proti pozitiv‑
nem naboju. Velikost vektorja dipola imenujemo tudi električni dipolni mo‑
ment. Večji kot je električni dipolni moment molekule, bolj polarna je mo‑
lekula. Pri mnogih polarnih molekulah se naboj niti ne razmakne v dobro
definirana točkasta naboja na določeni razdalji, a si njihove dipole vsee‑
no predstavljamo kot vektorje električnega dipola, ki kažejo od negativne
proti pozitivno nabiti strani molekule ter okoli sebe ustvarjajo značilno di‑
polno električno polje (15.3B).

A B

+

-

Slika 15.3: Električno polje v okolici dipola. A) Prikaz električnega potenciala in
ustreznih silnic. Ekvipotencialne črte so označene z oranžnimi oz. črtkanimi črta‑
mi. Pozitivni naboj, ki se znajde v bližini dipola, čuti električno silo v smeri silnic,
tj. v smeri proti nižjemu potencialu. B) Pri polarnih molekulah je težko govoriti o
dveh popolnoma ločenih točkastih nabojih, zato si njihov dipol predstavljamo kot
vektor, ki kaže od negativne strani molekule proti pozitivni strani, velikost vek‑
torja pa je sorazmerna s polarnostjo (vektor dipola je na sliki shematično označen
z zeleno puščico). Čeprav posameznih točkastih nabojev v taki molekuli ne razlo‑
čimo, pa tudi taka molekula okoli sebe ustvarja značilno dipolno električno polje.

Pri vodi (slika 15.1) je težko govoriti o dobro definiranih ločenih točka‑
stih nabojih, vseeno pa ima molekula vode zaradi svoje polarnosti relativ‑
no velik električni dipolni moment. Velikost dipolnega momenta izolirane
molekule vode je pe = 6,1 · 10−30 As nm ≈ 40 e0 pm. Dipolni moment vode
je torej ekvivalenten momentu, ki bi ga dobili, če bi bila pozitivni in ne‑
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gativni osnovni naboj med seboj oddaljena 40pm (za primerjavo: razdalja
med kisikom in vodikom v molekuli vode je približno 96pm).

15.5 Nabita površina, kondenzator
Zadnja porazdelitev naboja, pri kateri si bomo podrobneje ogledali elek‑
trično polje, je velika enakomerno nabita ravna površina. V bližini take
površine lahko silnice kažejo le pravokotno nanjo, saj se vzporedne kom‑
ponente zaradi simetrije med seboj izničijo (slika 15.4). Polje v bližini na‑
bite površine je torej homogeno in ni odvisno od razdalje od površine (ka‑
sneje bomo videli, da to ne velja, če so v okolici površine prosti ioni, kot so
npr. v fiziološki raztopini). Silnice seveda kažejo stran od pozitivno nabi‑
te površine oz. proti negativno nabiti površini, ekvipotencialne črte pa so
površini vzporedne.

A B C

+ +- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

Slika 15.4: A) Električno polje v okolici pozitivno nabite površine, B) okoli ne‑
gativno nabite površine in C) med pozitivno in negativno površino (npr. v kon‑
denzatorju ali v celični membrani). Če so površine velike in enakomerno nabite,
je polje v vseh treh primerih homogeno, silnice kažejo pravokotno na površino,
ekvipotencialne črte, ki so prikazane črtkano, pa so vzporedne površini.

Dve sosednji nasprotno nabiti površini imenujemo kondenzator. Taka
porazdelitev naboja je v naših telesih prisotna npr. na celičnih membra‑
nah, ki so na eni strani pogosto nabite drugače kot na drugi (več o tem še
kasneje, ko bomo obravnavali membranski potencial). Ker je električno po‑
lje aditivno, je v primeru dveh ravnih, nasprotno nabitih površin polje med
njima še enkrat večje kot v primeru ene same površine, na zunanji strani
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pa polja sploh ni (slika 15.4C). Natančen račun pokaže, da je jakost elek‑
tričnega polja med nabitima ravnima površinama, med katerima je prazen
prostor, enaka

E =
e

ϵ0S
. (15.12)

Večja kot je gostota naboja na površini (e/S), večje je polje med njima. Ker
so silnice med površinama vzporedne (električno polje med površinama
je homogeno), je električna napetost med njima kar U = ∆φ = Ed, kjer je
d razdalja med površinama (ta rezultat sledi neposredno iz enačbe 15.5).
Če zgornje enačbe združimo, dobimo pomembno zvezo med nabojem in
napetostjo med nabitima površinama kondenzatorja:

e = CU , (15.13)

kjer je C kapaciteta kondenzatorja, katere vrednost je za ravne površine
enaka

C =
ϵ0S

d
. (15.14)

Enota za kapaciteto je farad, 1 F = 1As/V. Kapaciteta je torej sorazmerna
velikosti površin, na katerih je nabran naboj, in obratno sorazmerna raz‑
dalji med površinama. Kapaciteta enega kvadratnega mikrometra tipične
biološke membrane je reda velikosti 10−14 F (primer 15.1).

Primer 15.1: kapaciteta membrane in akcijski potencial

Ocenimo, koliko molov ionov Na+ mora preiti preko membrane celice, da se preko
membrane ustvari električna napetost 100mV (za približno tako vrednost se mem‑
branska napetost spremeni pri nastanku akcijskega potenciala v živčnih celicah).
Za lažji račun privzemimo, da je celica okrogla in ima radij 10μm. Kapaciteta ene‑
ga kvadratnega mikrometra tipične biološke membrane je reda velikosti 10−14 F,
zato je celotna kapaciteta membrane take celice enaka

C = 10−14 F/μm2 · 4π(10μm)2 = 1,26 · 10−11 F . (15.15)

Količino naboja, ki je potrebna za vzpostavitev membranske napetosti 100mV, iz‑
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računamo s pomočjo enačbe 15.13:

e = CU = 1,26 · 10−11 As/V · 100mV = 1,26 · 10−12 As = 7,85 · 106e0 . (15.16)

Za vzpostavitev akcijskega potenciala torej potrebujemo le nekaj manj kot 8 mili‑
jonov ionov Na+.
Ocenimo še, za koliko se ob tem spremeni koncentracija natrijevih ionov v celici,
pri čemer upoštevamo, da je prostornina celice V = 4

3πr
3 = 4,2 · 10−12 l. Ob vdo‑

ru natrijevih ionov v celico med akcijskim potencialom se njihova koncentracija v
celici torej spremeni za

∆c =
n

V
=

N

NAV
=

7,85 · 106 mol
6,02 · 1023 4,2 · 10−12 l

= 3,1μM . (15.17)

Tipične koncentracije natrijevih ionov v celcah so reda velikosti 10 mM, zato lah‑
ko zaključimo, da se ob vzpostavitvi akcijskega potenciala koncentracija natrijevih
ionov v celici poveča zanemarljivo malo! To je seveda zelo ugodno, saj pri potova‑
nju električnih signalov po živcih membranskim črpalkam ni potrebno prečrpavati
ogromne količine ionov.
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Poglavje 16

Električno polje v snovi

Enačbe za električno polje, ki smo jih napisali do sedaj, veljajo v praznem
prostoru, ne pa tudi v snovi. Vsaka snov je namreč tudi sama sestavljena
iz nabitih delcev, ki s svojo prisotnostjo vplivajo na električno polje. V tem
poglavju si bomo ogledali tri primere interakcije med poljem in snovjo, ki
so pomembni v za medicino.

16.1 Kovine: Faradayeva kletka
Ena glavnih značilnost kovin je, da so v njih prosti, dobro gibljivi elektro‑
ni (kovine so zaradi tega dobri prevodniki električnega toka). Če kovino
postavimo v električno polje, električna sila (enačba 15.3) proste elektro‑
ne povleče v smer proti silnicam polja, pozitivna jedra atomov v kovini
pa se ne morejo premakniti, saj so vpeta v snovi (slika 16.1). Razporejanje
naboja ustvari električno polje, ki je ravno nasprotno zunanjemu (silnice
polja, ki nastane zaradi razporejanja, kažejo od pozitivnega naboja proti
negativnemu), zaradi česar se električno polje v kovini zmanjša. Naboji
se razporejajo toliko časa, dokler je v kovini še prisotno polje, ravnovesje
pa je doseženo, ko se polje v kovini dokončno izniči. Ker se razporejanje
naboja v kovinah zgodi zelo hitro, v notranjosti kovin praktično nikoli ni
električnega polja, ne glede na to, kaj se s poljem dogaja zunaj njih.

Zgoraj opisani pojav izrabimo pri t. i. Faradayevi kletki. Če namreč nek
prostor ovijemo v kovino, zaradi prerazporejanja naboja v kovini tudi v
prostoru znotraj nje ni električnega polja, ne glede na to, kakšno je polje v
okolici. Pojav do neke mere deluje celo, če je okoli prostora ovita le kovin‑
ska mreža. V Faradayevi kletki zato npr. izvajamo vse zahtevne električne
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E=0 E₀	E₀	

A B

Slika 16.1: Shematični prikaz delovanja Faradayeve kletke. A) Kovine so snovi
s prosto gibljivimi elektroni iz zunanjih atomskih lupin. Če na kovino ne delu‑
je električno polje, so elektroni v kovini razporejeni enakomerno. B) Če kovino
postavimo v zunanje električno polje E0, se zaradi električne sile elektroni po‑
maknejo v smer nasproti električnih silnic, za seboj pa pustijo pozitivno nabite
kovinske atome. Prerazporejeni naboji ustvarjajo električno polje, ki je ravno na‑
sprotno zunanjemu (silnice, ki nastanejo zaradi prerazporejenih nabojev, kažejo
od + proti−). Elektroni se v kovini prerazporejajo, dokler je v njej še prisotno ele‑
ktrično polje in v zelo kratkem času dosežejo ravnovesje, ko se njihovo in zunanje
polje ravno izničita in je polje znotraj kovine enako 0. Prostor, obdan s kovino, je
tako izoliran pred zunanjim električnim poljem.

meritve, ki bi jih lahko zmotili vplivi električnega polja iz okolice. Pojav
lahko enostavno preizkusimo tudi sami: če prenosni telefon zavijemo v
nekaj plasti alufolije, telefon ne bo več mogel sprejemati klicev, saj telefon‑
ski signal ne bo več mogel prodreti do njega (telefonski signal se prenaša
preko mikrovalov, ki so elektromagnetno valovanje). Omenimo še, da po‑
polne elektro‑magnetne izolacije ni enostavno izdelati, saj nas Faradeyeva
kletka varuje le pred električnim poljem, ne pa tudi pred magnetnim – zelo
težko je npr. narediti dobro izolacijo za magnetna polja z nizko frekvenco.

16.2 Neprevodne snovi
V neprevodnih snoveh sicer ni prostih nabojev, ki bi se lahko premika‑
li pod vplivom zunanjega električnega polja, kljub temu pa lahko tudi v
takih snoveh naboj v molekulah interagira z zunanjim poljem in mu na‑
sprotuje. Interakcijo med snovjo in poljem si lahko najlažje predstavljamo
na primeru polarnih molekul (slika 16.2A). Električno polje vleče pozitivni
del molekule v eno smer, negativni del molekule pa v nasprotno. Na po‑
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larno molekulo v homogenem električnem polju tako ne deluje neto sila,
ampak le navor, ki molekulo obrne v smer silnic1. Če se spomnimo de‑
finicije navora (enačba 3.5 pri mehaniki) in definicije električnega dipola
(enačba 15.11), lahko izračunamo, da je navor polja na molekulo enak vek‑
torskemu produktu med dipolom molekule in jakostjo električnega polja:

M = peE sinα , (16.1)

kjer je α kot med dipolom in silnicami polja. Navor je torej največji, če je
dipol pravokoten na silnice, če pa je dipol vzporeden silnicam, je navor v
homogenem polju enak 0.

Zaradi obračanja molekul se pod vplivom zunanjega električnega po‑
lja naboj malo prerazporedi tudi v neprevodnih snoveh (slika 16.2A). V
primerjavi s kovinami pa je prerazporejanje naboja v neprevodnih snoveh
bistveno manjše, zato se v njih polje le zmanjša in ne izgine popolnoma.
Zmanjšanje polja v snovi je odvisno od lastnosti, ki jo imenujemo dielek‑
tričnost (ϵ) in je definirana z

E⃗ =
E⃗0

ϵ
, (16.2)

pri čemer je E0 zunanje električno polje, E pa polje v snovi. Dielektričnost
snovi torej nima enote in opisuje, za kolikšen faktor se v snovi zmanjša
zunanje električno polje (ϵ je vedno večji od 1).

Dielektričnost imajo tudi snovi iz povsem nepolarnih molekul, npr.
CH4 ali molekule žlahtnih plinov. Take molekule sicer nimajo stalnega
dipola, a se v električnem polju vseeno polarizirajo, saj se negativni ele‑
ktronski oblak in pozitivno jedro razmakneta vsak v svojo smer ter tako
ustvarita polje, ki kaže v nasprotno smer od zunanjega 16.2B). Za občutek:
dielektričnost vode je 80 (voda je ena najbolj polarnih navadnih snovi), eta‑
nola približno 24, jedilnega olja okoli 3, plina helija pri normalnih pogojih
pa približno 1,00007.

Ker je v snoveh manjše električno polje kot v praznem prostoru, so v
snovi ustrezno drugačne tudi enačbe za jakost električnega polja. Če že‑

1V posebnih situacijah lahko v snovi ustvarimo zelo nehomogeno polje, zaradi česar
pozitivni in negativni del polarne molekule ne čutita enako velike sile. V takem primeru
polje na polarno molekulo ne deluje le z navorom, ampak tudi s silo.
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Slika 16.2: Shematični prikaz delovanja vpliva zunanjega polja na molekule v ne‑
prevodni snovi. A) Polarne molekule (npr. voda). Levo: če na molekule ne deluje
zunanje električno polje, so v povprečju orientirane naključno. Desno: v zuna‑
njem polju (E0) se snov polarizira, saj se zaradi delovanja električne sile molekule
obrnejo v smeri polja. Polarizirana snov ustvarja polje, ki kaže v obratno smer od
zunanjega in se od njega odšteje – polje v snovi je zaradi tega manjše od zunanje‑
ga polja. Dielektričnost snovi (ϵ) pove, za kolikokrat je polje v snovi (E) manjše
od zunanjega. B) Do podobnega efekta pride tudi pri nepolarnih molekulah (npr.
žlahtnih plinih). Levo: če na nevtralno molekulo ne deluje zunanje polje, je ne‑
gativni elektronski oblak simetrično razporejen okoli pozitivnega jedra. Desno:
zunanje polje povzroči, da se elektronski oblaki in jedra razmaknejo, zaradi česar
se molekule polarizirajo. Zaradi tega imajo tudi snovi iz nepolarnih molekul svo‑
jo dielektričnost.

limo enačbe, ki smo jih zapisali za prazen prostor, uporabiti tudi za opis
polja v snovi, moramo v njih namesto ϵ0 zapisati produkt ϵϵ0. Coulombov
zakon (enačba 15.2) za silo med dvema nabojema v snovi se tako napiše
F = e1e2/4πϵϵ0r

2. Podobno velja tudi za kapaciteto kondenzatorja (enačba
15.14): če v kondenzatorju ni praznega prostora, ampak neprevodna snov,
se mu kapaciteta poveča, saj velja C = ϵϵ0S/d.

16.3 Ionske raztopine: senčenje naboja
Na koncu si oglejmo še, kako se električno polje obnaša v naših celicah, ki
so napolnjene in obdane z ionsko raztopino. Raztopini ionov pravimo tu‑
di elektrolitske raztopine, snovem, ki v vodi razpadejo na ione pa elektroliti.
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Ioni v raztopini so točkasti in prosto gibljivi naboji. Če zunanje polje ni
prisotno, so kationi in anioni po raztopini razporejeni enakomerno in je
raztopina električno nevtralna. Če bi bil nekje v raztopini pribitek ionov
ene vrste, bi se ti namreč med seboj odbijali in se razmikali vse dokler ne bi
raztopina postala nevtralna. V prisotnosti zunanjega polja ioni čutijo elek‑
trične silo. Čeprav so ionske raztopine s tega stališča podobne kovinam, je
koncentracija prostih nabojev v raztopinah bistveno manjša kot v kovinah,
poleg tega pa je v raztopinah tudi več termičnega gibanja, zaradi česar se
ionske raztopine pod vplivom električnega polja obnašajo malo drugače
kot kovine.

Kot primer si poglejmo, kakšno električno polje čutijo nabite makro‑
molekule v raztopini, ki se znajdejo v bližini nabite površine, npr. celične
membrane (slika 16.3). Če bi bila nabita površina v praznem prostoru, bi
bilo polje okoli nje tako kot na sliki 15.4 in bi torej segalo (neskončno) daleč
stran. V ionski raztopini je drugače, saj naboj z membrane privlači naspro‑
tne ione iz raztopine – ti se zato naberejo ob membrani ter električno polje
membrane zasenčijo. Zaradi termičnega gibanja ionov to senčenje ni popol‑
no in v bližini membrane električno polje vseeno obstaja – zahteven račun
pokaže, da električni potencial v ionski raztopini z oddaljenostjo od nabite
površine pada eksponentno:

φ(x) = φ0e
−x/λD , (16.3)

pri čemer značilno dolžino eksponentnega padanja λD imenujemoDebyeva
dolžina (izg. »debajeva dolžina«).

Močnejše kot je senčenje, krajša je Debyeva dolžina. Z našim znanjem
fizike lahko uganemo, da bo senčenje tem močnejše, čim večja bo koncen‑
tracija ionov v raztopini (če ionov ni, tudi senčenja ni). Poleg tega bo sen‑
čenje manjše pri višji temperaturi, saj je takrat termično gibanje močnejše
preprečuje senčenje (z besedami termodinamike: nabiranje ionov ob po‑
vršini zmanjšuje entropijo, zato je ob višji temperaturi to manj ugodno).
Natančen izračun pokaže, da je vrednost Debyeve dolžine enaka

λD =

√
ϵϵ0kBT

2e20NAcion
≈ 0,3nm
√
cion

(16.4)

kjer je kBT termična energija, ki smo jo spoznali pri termodinamiki, cion
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Slika 16.3: Shematični prikaz senčenja električnega polja nabite površine v ion‑
skih raztopinah. Na zgornji shemi so glave nekaterih lipidnih molekul pozitivno
nabite. Ob nabiti površini se naberejo ioni z nasprotnim nabojem, a lahko zaradi
svojega termičnega gibanja naboj na površini zasenčijo le delno (zaradi entropije
ioni ne morejo biti na miru in »pospravljeni« ob površini). Izkaže se, da električni
potencial z oddaljenostjo od površine pada eksponentno z značilno dolžino, ki jo
imenujemo Debyeva dolžina (λD), njena velikost v fiziološki raztopini pa je pri‑
bližno 1 nm. V fiziološki raztopini se električno polje torej čuti le nekaj nm daleč.
Na veliki oddaljenosti od površine je raztopina spet električno nevtralna (v izbra‑
ni prostornini, ki je na sliki shematsko označena s sivim pravokotnikom, je enako
število pozitivnih in negativnih ionov). Na sliki je shematično prikazana tudi vre‑
dnost zeta potenciala površine (ζ), tj. potenciala na tisti razdalji od površine, pri
kateri ioni na površino niso več adsorbirani.

pa je ionska moč raztopine2, ki jo dobimo, če seštejemo molarne koncentra‑
cije vseh ionov v raztopini pomnožene s kvadratom naboja, ki ga nosijo,
cion = ½

∑
Z2

i ci . V drugem delu enačbe smo zmnožili vse konstante, upo‑
števali sobno temperaturo, koncentracijo pa moramo v enačbo vstaviti v
enoti mol/l.

Izračunajmo Debyevo dolžino za fiziološko raztopino, ki je 0,15 M raz‑
topina NaCl. Ker sta natrij in klor enovalenčna, je ionska moč take razto‑
pine prav tako cion = 0,15M (cion = ½((−1)20,15M + (+1)20,15M)). Če to
vrednost vstavimo v enačbo za Debyev dolžino (enačba 16.4), dobimo za

2V literaturi se ionska moč včasih imenuje tudi ionska jakost, označuje pa se tudi z µ
ali z I ; pri nas bomo ta simbola raje uporabljali za magnetno permeabilnost in električni
tok.
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vrednost Debyeve dolžine v fiziološki raztopini

λD ≈ 0,8nm . (16.5)

V fizioloških raztopinah je torej vrednost Debyeve dolžine le reda velikosti
nm, zato lahko nabite makromolekule med seboj interagirajo le, če so manj
kot nekaj nm narazen.

Iz zgornjega razmisleka sledi, da so interakcije med makromolekulami
zelo odvisne od ionske moči raztopine, saj je izvor vseh biokemijskih vezi
v elektrostatskih interakcijah med naboji na molekulah, atomih in ionih.
Biokemijski procesi zato v destilirani vodi potekajo precej drugače kot v
fiziološki raztopini. Če želimo imeti pri biokemijskih poskusih res prave
fiziološke pogoje (sploh če v poskusih nastopajo nabite molekule), mora‑
mo zato skrbeti ne le za pravo vrednost pH in pravo osmolarnost, ampak
tudi za ustrezno ionsko moč. Za konec omenimo še, da Debyeva dolži‑
na v principu obstaja tudi v kovinah, a je tam zaradi velike gostote naboja
zanemarljivo majhna.

Primer 16.1: efektivni naboj na makromolekulah in zeta potencial

Zaradi senčenja se v ionskih raztopinah nabite površine svoji okolici kažejo manj
nabite, kot so v resnici. Pravzaprav je »nabitost površine« v takih primerih težko
definirati, saj je težko potegniti ostro mejo med površino in na površino adsorbi‑
ranimi ioni. Nabitost površin v ionskih raztopinah se zato pogosto raje opisuje
z zeta potencialom, ki je kar vrednost električnega potenciala na tisti oddaljenosti
od površine, pri kateri ioni niso več adsorbirani na površino (ta razdalja ni vedno
dobro definirana, tipično pa je nekaj manj od Debyeve dolžine, slika 16.3). Zeta
potenciali nabitih makromolekul so največ nekaj 10mV. Za molekulo BSA se na
območju pH s slike 15.1 zeta potencial npr. giblje med +20mV pri pH = −3 in
−20mV pri pH = 7.
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Poglavje 17

Električni tok

Električni tok je eden najosnovnejših električnih pojavov. Ne le, da poganja
vse sodobne naprave, električni tok je tudi stalno prisoten v naših telesih
in ima osrednjo vlogo pri mnogih fizioloških procesih.

Električni tok je povezan s premikanjem električnega naboja po prosto‑
ru. Smer električnega toka je po dogovoru enaka smeri gibanja pozitivne‑
ga naboja (in je torej nasprotna smeri gibanja negativnega naboja), velikost
električnega toka pa opisuje količino naboja, ki se pretoči v določenem ča‑
su:

I =
e

t
. (17.1)

Ker je električni tok ena prvih opisanih električnih količin, si je prislužil
osnovno električno enoto amper, A (enoto za naboj so definirali šele ka‑
sneje, zaradi česar je sestavljena iz ampera in sekunde). Če se tok s časom
spreminja, lahko trenutno vrednost toka zapišemo z odvodom, I = de/dt.

V tem poglavju se bomo najprej spomnili osnovne zakonitosti elektri‑
čnega toka – Ohmovega zakona, nato si bomo pogledali, kako se tok pre‑
vaja skozi raztopine, kakšne so posebnosti izmeničnega toka ter na koncu
opisali še električni tok skozi telo. Spomnili se bomo tudi, da je koncept
električnega toka podoben konceptu ostalih tokov, ki smo jih srečali pri
opisovanju toka tekočin (poglavje 9) in transporta toplote in snovi (poglav‑
je 14), zato pri vseh teh pojavih veljajo podobne splošne zakonitosti.
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17.1 Ohmov zakon
Iz osnovne šole se spomnimo, da električni tok steče, če električni prevo‑
dnik priključimo na električno napetost. Zvezo med njima pri tem opisuje
znameniti Ohmov zakon:

U = RI , (17.2)

kjer jeU napetost,R pa električna upornost prevodnika. Enota za napetost
je volt (V), enota za upornost pa ohm (Ω = V/A). Spontano električni tok
teče od višjega električnega potenciala proti nižjemu (od + proti −, smer
električnega toka je torej enaka smeri gibanja pozitivnega naboja).

Za električni tok veljajo podobne zakonitosti kot za ostale tokove, ki
smo jih srečali do sedaj, npr. za toplotni in difuzijski tok. Če tok teče za‑
poredoma skozi več uporov, je tok skozi vse upore enak, skupni padec
napetosti pa je enak vsoti padcev napetosti na posameznih uporih (slika
17.1A). Če se tok razveji, mora biti tok, ki priteče v razvejišče, po velikosti
enak toku, ki odteče iz razvejišča. Pri vzporedni vezavi uporov je tako pa‑
dec napetosti na vseh uporih enak, vsota tokov skozi posamezne upore pa
je enaka celotnemu toku, ki priteče v razvejišče (slika 17.1B). Ohmov zakon
velja za vsak upor posebej, pa tudi za skupno upornost vezja, sestavljenega
iz več uporov. Skupno upornost v primeru zaporedne vezave izračunamo
kot vsoto posamezni upornosti, RS = R1+R2, v primeru vzporedne veza‑
ve pa skupno upornost izračunamo iz zveze 1

RS
= 1

R1
+ 1

R2
. Te zveze smo

že srečali tudi pri opisovanju drugih tokov v poglavjih 9 in 14.
Ker naboji med gibanjem v snovi čutijo upor (trenje), moramo za vzdr‑

ževanje električnega toka neprestano opravljati delo, snov pa se zaradi
električnega toka segreva (več o trenju pri električnem toku bomo spoznali
v naslednjem razdelku). Moč, ki se porablja na uporu lahko izračunamo, če
upoštevamo, da energija za premagovanje upora pride iz električne ener‑
gije pretočenega naboja. Če upoštevamo, da električno energijo in napetost
povezuje zveza ∆We = eU (enačba 15.8) in se spomnimo, da je I = e/t in
P = ∆We/t, dobimo izraz za moč, ki se troši na uporu:

P =
∆We

t
=
eU

t
= IU =

U2

R
= RI2 , (17.3)

kjer smo zadnja dva zapisa moči dobili tako, da smo tok oz. napetost
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1/R =1/R +1/RS 1 2
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Slika 17.1: Tokovi skozi upore in padci napetosti na uporih pri zaporedni in
vzporedni vezavi uporov. Skupna upornost zaporedno vezanih uporov je RS =
R1 + R2, skupno upornost vzporedno vezanih uporov pa izračunamo iz zveze
1
RS

= 1
R1

+ 1
R2

. Ohmov zakon velja za vsak upor posebej, pa tudi za skupni upor:
U0 = RSI0.

izrazili iz Ohmovega zakona (v prvem zapisu smo I zamenjali z U/R, v
drugem paU zRI). Moč, ki se troši na uporu (in s tem njegovo segrevanje),
je torej odvisna od kvadrata toka, ki teče skozi upor.

17.2 Električni tok v raztopinah
Podobno kot pri pretakanju toplote in snovi tudi pri električnem toku velja,
da po prevodniku teče tem več toka, čim večji je njegov presek, in da je upor
tem večji, čim daljši je prevodnik (slika 17.2). Upornost prevodnika je od
njegove velikosti torej odvisna kot

R =
ℓ

σS
=
ζℓ

S
, (17.4)

kjer je ℓ dolžina prevodnika, S ploščina njegovega preseka, konstanti σ in
ζ pa sta specifična prevodnost oz. specifična upornost snovi, iz katere je nare‑
jen prevodnik. Oba zapisa lahko uporabljamo povsem ekvivalentno, saj je
specifična upornost obratno sorazmerna specifični prevodnosti, ζ = 1/σ.
V nekaterih situacijah iz navade uporabljamo zapis s specifično upornostjo,
v drugih zapis s prevodnostjo. Enota za specifično upornost je Ωm, eno‑
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to za specifično prevodnost pa se pogosto zapiše kot S/m, kjer je S enota
siemens (S = 1/Ω).

S

v

Δx=vt

EE

U

ℓ

S

Slika 17.2: . Shematični prikaz gibanja pozitivnega naboja (označenega z modro) v
električnem polju. Električni prevodnik, ki ima presek S in dolžino ℓ, priključimo
na električno napetost U . V snovi se vzpostavi električno polje z jakostjo E =
U/ℓ, zaradi česar se naboji začnejo gibati pospešeno, nato pa zaradi upora kmalu
dosežejo končno povprečno hitrost v̄. V času t se pretoči naboj v sivo označeni
prostornini, iz česar lahko izračunamo, da je specifična prevodnost sorazmerna
koncentraciji naboja (MaFijski primer 17.1).

Kovine so dobri prevodniki električnega toka, zato je vrednost njihove
specifične električne prevodnosti velika. Kako pa je s prevodnostjo člo‑
veškega telesa, ki ga večinoma sestavlja vodna raztopina? Ker so nosilci
naboja v raztopinah ioni, lahko ugibamo, da je specifična prevodnost raz‑
topine odvisna od koncentracije ionov v njej – če v raztopini ni prostih
nosilcev naboja, raztopina ne more prevajati. Poleg tega lahko ugibamo,
da je prevodnost odvisna tudi od gibljivosti ionov – če se neka vrsta ionov
v raztopini ne bi mogla gibati, tudi k električnemu toku v raztopini ne bi
nič doprinesla.

Preden zapišemo izraz za specifično prevodnost raztopin, si poglejmo
dogajanje v snovi s prosto gibljivimi nosilci naboja, ko jo priključimo iz‑
vor električnega toka (slika 17.2). Izvor električnega toka v snovi ustvarja
stalno električno polje, ki preko električne sile povzroči gibanje nosilcev
naboja. Podobno kot telesa v viskozni tekočini tudi gibajoči se naboji čuti‑
jo silo upora, zato pod vplivom električne sile ne pospešujejo v nedogled,
ampak kmalu dosežejo končno hitrost (spomnimo se sedimentacije eritro‑
citov, primer 9.1). Končna hitrost potovanja nabojev je odvisna od jakosti
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električnega polja, pa tudi od vrste snovi in lastnosti nabojev. Pri isti elek‑
trični sili npr. kalijevi ioni v vodni raztopini čutijo manjši upor kot natri‑
jevi, zato je njihova končna hitrost pri dani jakosti električnega polja večja,
kot je končna hitrost natrijevih ionov. Pravimo, da je končna hitrost gibanja
nabojev pri dani jakosti polja odvisna od gibljivosti nabojev, ki jo označimo
z β:

v̄ = βE . (17.5)

ion H+ Na+ K+ OH– Cl– SO 2–
4

gibljivost [10−8 m2/Vs] 36 5,2 7,6 −21 −7,9 −8,3

Tabela 17.1: Izmerjene gibljivosti nekaterih ionov v vodi pri 25 °C (povzeto po
[3]). Gibljivost anionov je negativna, saj potujejo v smeri, ki je nasprotna smeri
električnega polja. Gibljivost elektronov v kovinah je približno milijon‑krat večja
od gibljivosti ionov.

Gibljivosti nekaterih ionov v vodi so prikazane v tabeli 17.1. Iz tabele
je razvidno, da je gibljivost kalijevega iona večja od gibljivosti natrijevega
iona, čeprav je slednji manjši in bi zato pričakovali, da pri gibanju čuti manj
upora. Razlog za večji upor natrijevega iona je v tem, da je zaradi majhne
velikosti natrija v njegovi bližini večje električno polje (po Coulombovem
zakonu jakost polja pada s kvadratom oddaljenosti) in zato močneje privla‑
či molekule vode, ki posledično potujejo skupaj z njim in mu s tem povečajo
efektivno velikost (okoli iona se naredi t. i. hidratacijski ovoj). V tabeli tudi
vidimo, da je gibljivost protonov (H+) in hidroksidnih ionov (OH–) precej
večja od ostalih ionov. Natančen mehanizem gibanja teh ionov ni povsem
poznan, po eni od hipotez lahko ti ioni kar nekako preskakujejo med sose‑
dnjimi molekulami vode.

Sedaj lahko zapišemo, od česa je odvisna prevodnost raztopin. Daljši
račun pokaže (MaFijski primer 17.1), da je specifična prevodnost raztopine
kar sorazmerna produktu koncentracije in gibljivosti ionov v raztopini:

σ = FZβc , (17.6)
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kjer je F Faradayeva konstanta, ki opisuje naboj enega mola osnovnega na‑
boja (F = e0NA ≈ 105 As/mol), Z je valenca ionov (e = Ze0), β je njihova
gibljivost, c pa njihova koncentracija. Če je v raztopini več vrst ionov, ki
imajo različne gibljivosti, se njihovi prispevki k celotni specifični prevo‑
dnosti seštejejo:

σ =
∑

σi =
∑

FZiβici . (17.7)

Specifična prevodnost je vedno pozitivna, saj sta valenca (Z) in giblivost
(β) v enačbah 17.6 in 17.7 ali hkrati pozitivni ali hkrati negativni.

Prevodnost vodnih raztopin je torej kar sorazmerna koncentraciji razto‑
pljenih ionov in njihovi gibljivosti. Ker je koncentracija ionov v destilirani
vodi zelo majhna (kolikšna je, si lahko vsak izračuna iz znane pH vrednosti
vode), je destilirana voda praktično izolator. Sklepamo lahko tudi, da sno‑
vi, ki v vodi ne disociirajo na ione (npr. glukoza), na prevodnost raztopine
nimajo direktnega vpliva, lahko pa npr. povečajo viskoznost raztopine in s
tem zmanjšajo gibljivost ionov. Za vajo je v primeru 17.1 izračunana elek‑
trična prevodnost fiziološke raztopine.

Podobno kot ioni se pod vplivom električnega polja gibljejo tudi veli‑
ke nabite makromolekule, npr. DNA in proteini. Če je molekula velika,
pri svojem gibanju čuti velik upor in posledično v električnem polju dose‑
že manjšo končno hitrost gibanja. To izrabljamo pri številnih elektroforet‑
skih metodah za ločevanje in določanje makromolekul v raztopinah (pri‑
mer 17.2).

Primer 17.1: električna prevodnost fiziološke raztopine

Izračunajmo prevodnost fiziološke raztopine! Fiziološka raztopina je 0,9 % razto‑
pina NaCl, kar pomeni, da je v enemu litru vode raztopljeno 9 g soli. Koncentracija
obeh vrst ionov v fiziološki raztopini je torej

c =
n

V
=

m/M

V
=

9g ·mol
58,44g

· 1
l
= 154mM . (17.8)

Ko to koncentracijo vstavimo v enačbo za specifično prevodnost raztopin (enačba
17.7) in upoštevamo gibljivosti ionov iz tabele 17.1, dobimo

σ = Fc(ZNaβNa+ZClβCl) =
105 As
mol

· 0,154mol
10−3 m3 (5,2+7,9)

10−8 m2

Vs
= 2 S/m . (17.9)

Naša telesa so torej precej manj prevodna od kovin, katerih specifične prevodnosti
so reda velikosti 107 S/m. Po drugi strani pa smo mnogo bolj prevodni od lesa
(σ ≈ 10−15 S/m), pa tudi od destilirane in deionizirane vode (σ < 10−5 S/m).
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Primer 17.2: elektroforeza
Elektroforeza je gibanje nabitih delcev v raztopinah in gelih pod vplivom zunanje‑
ga električnega polja. Makromolekule imajo različne velikosti in oblike ter nosijo
različno velik naboj, zaradi česar imajo tudi različne elektroforetske gibljivosti. Če
torej raztopino makromolekul priključimo na električno napetost, se bodo začele
gibati z različnimi hitrostmi in se bodo s časoma med seboj ločile. Manjše oz. bolj
nabite molekule bodo hitrejše, večje oz. manj nabite pa počasnejše (slika A). Na
osnovi elektroforeze deluje vrsta metod za ločevanje in določanje makromolekul,
predvsem DNA in proteinov.

U

v v v

kD

vzorec A

kontrola

vzorec B

A B

Ločevanje lahko optimiziramo s spretnim izborom medija, po katerem se gibljejo
molekule. Vodna raztopina pogosto za to ni najbolj primerna, saj se gibljivosti v
raztopinah ne razlikujejo dovolj – gibljivost je približno obratno sorazmerna veli‑
kosti molekule (enačba 17.11), po drugi strani pa imajo večje molekule ponavadi
tudi večji naboj (sploh pri DNA je zveza med dolžino in nabojem kar linearna, saj
ima vsak bazni par dva negativna naboja). Boljše ločevanje se doseže npr. v gelih,
skozi katere manjše molekule potujejo bistveno lažje kot večje. Poleg tega lahko s
pazljivo izbiro pH raztopine vplivamo na naboj na makromolekuli (če je pH enak
izoelektrični točki makromolekule, se ta v električnem polju seveda sploh ne bo
premikala).
Slika B prikazuje primer rezultata ločevanja proteinov z elektroforezo na gelu [21].
Na začetek gela vbrizgamo raztopino z neznano vsebnostjo proteinov ter na gel
priključimo električno napetost. Ko se po nekaj časa proteini razločijo, jih obarva‑
mo in vsaka vrsta proteinov se na gelu prikaže kot ločen pas. Če hkrati skozi gel
vzporedno spustimo še kontrolno raztopino s proteini znanih velikosti (na sliki
spodaj, velikosti so označene v kilodaltonih), lahko enostavno ugotovimo, koliko
različnih vrst proteinov smo imeli v vzorcu in približno kako veliki so bili. Na sliki
je bilo v vzorcu A npr. največ proteinov z velikostjo približno 50 kD, v vzorcu B
pa je bilo teh proteinov manj, več pa je bilo proteinov z velikostjo 95 kD.
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MaFijski primer 17.1: izpeljava specifične prevodnosti razropin

Z našim znanjem fizike znamo izpeljati izraz za prevodnost raztopin (enačba 17.6),
le nekaj natančnosti in potrpljenja potrebujemo. Za začetek si poglejmo sliko 17.2,
ki shematično prikazuje gibanja pozitivnega naboja v električnem polju. V staci‑
onarnem stanju se pozitivni naboji s povprečno hitrostjo v̄ gibljejo proti nižjemu
električnemu potencialu.
Ker tudi pri elektriki veljajo enaka geometrijska pravila kot pri pretakanju tekočin
(primerjajmo sliki 17.2 in 9.2A ter se spomnimo enačbe 9.8 pri mehaniki), je tudi
velikost električnega toka sorazmerna povprečni hitrosti naboja.
V času t se pretoči naboj v sivo označeni prostornini. Če je gostota naboja v snovi
enaka ρe (tj. naboj na enoto prostornine) in se naboj premika s povprečno hitrostjo
v̄, lahko iz slike razberemo, da se naboj v času t premakne za razdaljo ∆x = v̄t,
zato se ga v tem času pretoči e = ρeV = ρe∆xS = ρev̄tS. Električni tok je enak
količini naboja na enoto časa (I = e/t), zato torej velja:

I = ρev̄S oz. j =
I

S
= ρev̄ . (17.10)

V zgornji enačbi smo definirali še gostoto električnega toka j, ki opisuje tok na enoto
preseka in nam pride prav pri opisovanju tokov, ki niso povsod po preseku enaki.
Povezavo med efektivno velikostjo iona in njegovo gibljivostjo lahko ocenimo, če
za silo upora uporabimo linearni (Stokesov) zakon (enačba 9.8 pri mehaniki). Ko se
ioni gibljejo enakomerno, je sila upora nasprotno enaka električni sili, 6πrηv = eE.
Če jakost električnega polja izrazimo z hitrostjo in gibljivostjo (enačba 17.5) ter
upoštevamo, da je naboj iona odvisen od njegove valence (e = Ze0), dobimo oceno
za gibljivost:

β =
Ze0
6πrη

, (17.11)

kjer je r efektivni polmer iona, t. i. hidrodinamski radij, η pa viskoznost raztopine.
Ioni so torej tem manj gibljivi, čim večji imajo hidrodinamski radij in čim večja je
viskoznost raztopine.
Povežimo še električno prevodnost raztopin z gibljivostjo ionov v njej. Če defini‑
cijo za gibljivost (enačba 17.5) vstavimo v enačbo za zvezo med tokom in hitrostjo
(enačba 17.10), dobimo

I = ρeSβE . (17.12)

Spomniti se moramo še, da je sprememba napetosti, če vzdolž silnice električnega
polja prepotujemo razdaljo ℓ, enaka U = ∆ϕ = Eℓ (enačba 15.5). Nato v zgornjem
izrazu E nadomestimo z U/ℓ, ter dobljeni izraz primerjamo z Ohmovim zakonom
in enačbo za električno upornost prevodnika z dolžino ℓ (enačba 17.4). Iz primerja‑
ve sledi odvisnost specifične prevodnosti raztopine od gibljivosti in gostote naboja
v njej:

σ = βρe = FZβc , (17.13)

kjer smo za drugim enačajem prevodnost zapisali s pomočjo molarne koncentracije
iona v raztopini in Faradayeve konstante.
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17.3 Izmenični tok
V prejšnjem poglavju smo opisovali električni tok v prevodni snovi, ko
jo priključimo na stalno napetost in tok teče le v eno smer. Pogosto pa
je praktično uporabljati izmenični tok, pri katerem se napetost na izvoru
periodično sinusno spreminja, zaradi česar se periodično spreminja tudi
električni tok. Izmenični tok je npr. lažje proizvajati in prenašati na dolge
razdalje, zaradi česar ga uporabljamo v električnem omrežju (glavne za‑
sluge za vpeljavo izmeničnega toka je imel legendarni Nikola Tesla). Poleg
tega izmenični tok v ionskih raztopinah ne povzroči elektrolize. V Evropi
je frekvenca električnega omrežja 50 Hz, v ZDA pa 60 Hz. Z angleško kra‑
tico se izmenični tok označi z AC (alternating current), enosmerni pa z DC
(direct current).

Če se napetost spreminja sinusno, lahko njeno odvisnost od časa zapi‑
šemo analogno zapisu nihanja:

U(t) = U0 sin(ωt) , (17.14)

kjer je ω krožna frekvenca, ki je s frekvenco povezana z znano enačbo ω =
2πν, U0 pa je amplituda napetosti.

Če na izmenično napetost priključimo upor, se tok skozi upor po Ohmo‑
vem zakonu spreminja sorazmerno z napetostjo (I(t) = U(t)/R, enačba
17.2) in se torej tok spreminja v fazi z napetostjo:

I(t) = I0 sin(ωt) , (17.15)

pri čemer sta tudi amplituda toka in napetosti povezani preko Ohmovega
zakona: I0 = U0/R (slika 17.3).

Napetost in tok se pri izmeničnem toku spreminjata periodično od po‑
zitivne do negativne vrednosti, zato sta v povprečju enaka nič, U(t) = 0 in
I(t) = 0. Kot merilo za velikost napetosti in toka zato po navadi uporabimo
efektivno napetost in efektivni tok, ki sta definirana kot

Uef =

√
U2(t) oz. Ief =

√
I2(t) (17.16)

V angleščini se tako izračunane efektivne vrednosti imenujejo RMS vre‑
dnosti – root‑mean‑square ‑ saj jih izračunamo tako, da količino najprej kva‑
driramo in s tem dobimo le pozitivne vrednosti, nato izračunamo povpre‑
čje, na koncu pa še korenimo. Ker je povprečje kvadrata sinusa enako eni
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Slika 17.3: Spreminjanje toka in napetosti skozi upor pri izmeničnem toku. Za‑
radi Ohmovega zakona sta tok in napetost v vsakem trenutku sorazmerna, njuni
amplitudi pa sta povezani z upornostjo upora U0 = RI0. Moč, ki se troši na uporu
(P (t) = I(t)U(t)), se spreminja kot sin2(ωt) in je vedno pozitivna, v povprečju pa
je enaka kar polovici amplitude, P̄ = P0/2 (pri funkciji sin2 je površina vrha ravno
enaka površini doline – na sliki sta oba označena z oranžno).

polovici (sin2(ωt) = ½), so pri sinusnih spremembah efektivne vrednosti
za faktor

√
2 manjše od amplitude:

Uef =
1√
2
U0 oz. Ief =

1√
2
I0 (17.17)

V Evropi je efektivna napetost v hišnem električnem omrežju enaka Uef =
230V, v ZDA pa Uef = 110V.

Čeprav sta povprečni vrednosti toka in napetosti enaki nič, pa to ne ve‑
lja za moč, ki se troši na uporu. Moč je namreč vedno pozitivna ne glede na
to, v katero smer teče tok, saj je produkt napetosti in toka vedno pozitiven
(slika 17.3):

P = I(t)U(t) = I0U0sin2(ωt) =
1

2
I0U0 , (17.18)

oziroma
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P = UefIef . (17.19)

Povprečno moč, ki se troši na uporu, lahko torej pri izmeničnem toku izra‑
čunamo na enak način kot pri enosmernem, le da v formulo za moč (enačba
17.3) vstavimo efektivni vrednosti napetosti in toka.

17.4 Tok skozi kondenzator: reaktanca
Človeško telo električnemu toku ne predstavlja le enostavnega upora, saj
so celice obdane z membrano, ki se z električnega stališča obnaša kot kon‑
denzator. Za razumevanje obnašanja toka skozi telo si moramo zato naj‑
prej ogledati, kako se v izmeničnem toku obnašajo električni sistemi, ki jih
sestavljajo upori in kondenzatorji.

Obnašanje upora v izmeničnem toku smo spoznali v prejšnjem razdel‑
ku: napetost na uporu v vsakem trenutku sorazmerna toku, razmerje nju‑
nih amplitud pa je po Ohmovem zakonu enako upornosti (U0/I0 = R). Pri
kondenzatorju je drugače: osnovna lastnost kondenzatorja je, da se lahko
na njem nabira naboj, pri čemer je električna napetost na kondenzatorju
sorazmerna količini nabranega naboja (e = CU , enačba 15.13). Ko z elek‑
tričnim tokom na kondenzator priteka naboj, se kondenzator polni. Ob
tem na kondenzatorju narašča napetost, s katero pa kondenzator naspro‑
tuje toku (primer 17.3). Za kondenzator tako ne velja Ohmov zakon: tok
skozi kondenzator ni sorazmeren napetosti na kondenzatorju, ampak je
sorazmeren njenemu odvodu po času (I = de/dt = CdU/dt). Če se torej
napetost na kondenzatorju spreminja kot sinus, se bo tok spreminjal kot
kosinus. Napetost in tok se tako spreminjata z enako frekvenco, a je med
njima fazni zamik.

Daljši račun pokaže, da za razmerje med amplitudo napetosti in ampli‑
tudo toka na kondenzatorju velja (MaFijski primer 17.2):

U0

I0
= XC , kjer je XC =

1

ωC
. (17.20)

Količino XC imenujemo reaktanca kondenzatorja, saj opisuje, kako močno
se kondenzator »upira« toku (večja kot je reaktanca, manjša je amplituda
toka pri dani amplitudi napetosti). Enota za rekatanco je enaka kot enota
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za upornost, tj. ohm. Pri tem je potrebno poudariti, da se kondenzator to‑
ku ne upira na enak način kot upor: na uporu se vedno porablja električna
energija (enačba 17.19), kondenzator pa se v enem nihaju toka napolni in
sprazni ter pri tem energijo najprej sprejme ter nato spet odda, zato je pov‑
prečna moč na kondenzatorju enaka 0.

Reaktanca kondenzatorja je obratno sorazmerna frekvenci toka, kar si
lahko dobro predstavljamo: če na kondenzator priključimo enosmerni tok
(pri njem je frekvenca enaka nič, reaktanca pa je torej neskončno velika),
se bo kondenzator napolnil in nato toka sploh ne bo več prepuščal (primer
17.3). Če je po drugi strani frekvenca toka visoka, se bo kondenzator ob tem
polnil in praznil in bo izmenični tok skozi njega tekel brez težav (reaktanca
kondenzatorja je v tem primeru majhna).

Primer 17.3: polnjenje in praznjenje kondenzatorja

Osnovna značilnost kondenzatorja je, da se na njemu lahko nabere električni na‑
boj, ki je z napetostjo na kondenzatorju povezan preko e = CU , kjer jeC kapaciteta
kondenzatorja. Za kondenzator zato ne velja Ohmov zakon, saj tok skozi konden‑
zator ni sorazmeren napetosti na kondenzatorju, temveč odvodu napetosti po ča‑
su: I = de/dt = CdU/dt. Oglejmo si obnašanje toka in napetosti na kondezatorju,
če prazen kondenzator priključimo na enosmerno napetost in če poln kondenzator
praznimo skozi upor.

U0

U0

U0

-I0

I0

t

t t

t

U(t)

U(t)

UR

UR

U0= +UR UC

UC

UC

I(t)

I(t)C

C

R

R

A

B

I

I

Če prazen kondenzator priključimo na izvor enosmerne napetosti (slika A), po
tokokrogu steče električni tok, s katerim na kondenzator priteka naboj in kon‑
denzator se začne polniti. Zaradi tega na kondenzatorju narašča napetost (UC),
ki pa je ravno nasprotna napetosti izvora in zato nasprotuje toku. Ko se nape‑
tost na kondenzatorju po velikosti približuje napetosti na izvoru, se električni tok
zmanjšuje proti nič. Na začetku je torej polnjenje hitro, potem pa vedno poča‑
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snejše. Natančnejši račun pokaže, da se kondenzator polni eksponentno s časom,
UC = U0(1 − e−t/τ ), tok pa pada eksponentno s časom, I = I0e

−t/τ , pri čemer je
značilni čas enak produktu upora in kapacitete, τ = RC. Tok skozi kondenzator
zares ni sorazmeren napetosti temveč njenemu odvodu. Napetost na uporu (UR)
je sorazmerna toku in tudi eksponentno pada s časom, vsota napetosti na uporu
in kondenzatorju pa je vseskozi enaka napetosti na izvoru UR + UC = U0.
Oglejmo si še obnašanje toka in napetosti na kondenzatorju, če napolnjen konden‑
zator iz primera A izpraznimo (slika B). Izvor izključimo iz tokokroga, zato skozi
upor steče električni tok, s katerim naboj odteka s kondenzatorja in kondenzator
se začne prazniti (tok sedaj teče v obratni smeri, zato je negativen). Napetost na
kondenzatorju se počasi približuje vrednosti 0, hkrati pa se manjša tudi električni
tok, zato se kondenzator prazni vse počasneje. Natančnejši račun pokaže, da je tu‑
di praznjenje kondenzatorja eksponentno, UC = U0e

−t/τ , pri čemer je značilni čas
praznjenja spet enak produktu upora in kapacitete, τ = RC. Tudi v tem primeru
je tok sorazmeren odvodu napetosti na kondenzatorju, vsota napetosti na uporu
in kondenzatorju pa je vseskozi enaka 0, saj v tokokrogu ni izvora napetosti.
Spomnimo se, da smo analogen račun naredili pri obravnavi transporta toplote
in snovi v poglavju 14.5. Tudi pri pri približevanju ravnovesni temperaturi ali
ravnovesni koncentraciji je bil značilni čas eksponentnega pribiževanja ravnovesju
enak τ = RC, le da je bil C pri toploti predstavljal toplotno kapaciteto (enačba
14.9), pri izmenjevanju snovi pa velikost predelka (enačba 14.11).

MaFijski primer 17.2: tok skozi kondenzator

Za vajo izračunajmo, kako se spreminja tok skozi kondenzator ob njegovem pra‑
znjenju, nato pa poglejmo še, kako se kondenzator obnaša v izmeničnem toku.
V primeru 17.3B smo navedli, da se kondenzator prazni eksponentno s časom, se‑
daj pa bomo ta rezultat tudi izračunali! Ob času 0 je kondenzator poln in je na njem
napetost U0, nato pa ga priključimo na upor in se začne prazniti. Tok skozi upor
je enak toku skozi kondenzator, pri čemer je tok skozi upor po Ohmovem zakonu
enak I = UR/R, tok skozi kondenzator pa je I = de/dt = CdUC/dt. Če upošte‑
vamo, da je padec napetosti na uporu nasprotno enak napetosti na kondenzatorju
(UR = −UC), dobimo

I =
CdUC

dt
=

UR

R
= −UC

R
. (17.21)

Zgornjo enačbo preuredimo tako, da damo člene z UC na eno stran:

dUC

UC
= − dt

RC
(17.22)

in integriramo
lnUC/U0 = − t

RC
(17.23)

ter rezultat antilogaritmiramo in tako dobimo znano eksponentno odvisnost:

UC(t) = U0e
−t/τ , (17.24)
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kjer je značilni čas enak produktu upornosti in kapacitete, τ = RC.

Oglejmo si še obnašanje toka in napetosti na kondezatorju če vezje s kondenzator‑
jem in uporom priključimo na izmenično napetost.

U0

-U0

I0

t

U(t)

UR

U= +UR UC

UC

I(t)

-I0

δ

C
R

Upor in kondenzator sta vezana zaporedno, zato skozi oba teče isti tok. Za lažji
račun predpostavimo, da se tok spreminja kot kosinus:

I = I0 cos(ωt) (17.25)

Za upor velja Ohmov zakon, zato je napetost na uporu v vsakem trenutku soraz‑
merna toku in se tudi spreminja kosinusno (zelena krivulja na sliki)

UR = UR0 cos(ωt) , (17.26)

njuni amplitudi pa sta povezani prekoUR0 = RI0. Za kondenzator po drugi strani
velja, da je tok sorazmeren odvodu napetosti. Če se tok spreminja kosinusno, se
napetost na kondenzatorju torej spreminja sinusno, saj je odvod kosinusa ravno
sinus (rdeča krivulja na sliki):

UC = UC0 sin(ωt) . (17.27)

Napetost in tok na kondenzatorju torej ne nihata v fazi, ampak napetost zaostaja za
tokom za fazno razliko π/2. Povezavo med amplitudo napetosti na kondenzatorju
in tokom dobimo, če tok izrazimo kot odvod napetosti po času in torej enačbo 17.27
odvajamo po času:

I =
de

dt
= C

dUC

dt
= ωCUC0 cos(ωt) . (17.28)

S primerjavo enačb 17.25 in 17.28 dobimo ravno izraz za reaktanco kondenzatorja,
ki povezuje amplitudi napetosti in toka skozi kondenzator (enačba 17.20).
Skupni padec napetosti na vezju upora in kondenzatorja je enak vsoti padcev na
uporu in kondenzatorju, U = UR + UC (modra krivulja na sliki). S spretnim se‑
števanjem kotnih funkcij je mogoče pokazati, da se skupna napetost spreminja z
enako frekvenco kot tok, a ima v splošnem glede na tok fazni zamik δ:

U = U0 cos(ωt− δ) (17.29)
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V naslednjem poglavju bomo spoznali, da so napetost in tok skozi sistem ter fazni
zamik δ povezani preko električne impedance sistema.

17.5 Tok skozi telo in impedanca telesa
Za konec poglavja o električnem toku si poglejmo še, kako se na električni
tok odziva človeško telo. Telo je večinoma sestavljeno iz ionske raztopine,
celice pa obdaja lipidna membrana, ki je za enosmerni električni tok ne‑
prevodna in se obnaša kot kondenzator. Telo je torej z električnega stališča
zapleten sistem povezanih uporov in kondenzatorjev. Taki sistemi imajo v
splošnem upornost (R) in reaktanco (X), kar znajo elektrotehniki povezati
v skupno lastnost imenovano električna impedanca oz. bioimpedanca, kadar
gre za biološke sisteme. Zveza med impedanco, tokom in napetostjo je v
splošnem zapletena in jo raje prepustimo elektrotehnikom. Mi si obnašanje
poglejmo le na kvalitativnem nivoju.

Če na telo priključimo izmenično napetost, se tok sicer spreminja z isto
frekvenco, a je med tokom in napetostjo fazni zamik (slika 17.4A). Impe‑
danca telesa pri tem določa tako fazni zamik kot tudi razmerje med am‑
plitudo toka in napetostjo. Impedanca telesa je odvisna od njegove upor‑
nosti in reaktance, slednja pa je zelo odvisna od frekvence izmeničnega
toka (spomnimo se razmišljanja ob kondenzatorju in enačbe 17.20). Zato
lahko sklepamo, da je tudi odziv telesa na električni tok zelo odvisen od
frekvence toka. To odvisnost si lahko dobro predstavljamo s pomočjo slike
17.4B. Enosmerni tok lahko teče le skozi medcelični prostor, saj se membra‑
na celic obnaša kot kondenzator in zato enosmernega toka ne prepušča. Z
višanjem frekvence lahko vedno več toka prodre tudi skozi celice zato se
impedanca telesa (in s tem tudi specifična upornost) z višanjem frekvence
manjša. Visokofrekvenčni električni tok tako lažje teče skozi telo kot eno‑
smerni.

Impedanca tkiv je odvisna od mnogih faktorjev, npr. od velikosti, obli‑
ke in od njihove sestave. Specifična upornost krvi je npr. približno 1,5Ωm,
upornost maščobnega tkiva pa je približno 25 krat večja. Obe tkivi se ob‑
našata skoraj kot idealna upora brez reaktance, zato njuna impedanca in
upornosti nista odvisna od frekvence toka. Drugače je pri mišičnem tki‑
vu, kjer ima kapaciteta celičnih membran večjo vlogo. Specifična upornost
mišičnega tkiva je pri nizkih frekvencah nekajkrat večja od upornosti krvi,
pri frekvenci 1 MHz pa pade na praktično enako vrednost.
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Slika 17.4: Odziv telesa na izmenični tok. A) Zaradi celičnih membran ima telo
poleg električne upornosti tudi kapaciteto. Za telo zato ne velja preprost Ohmov
zakon, temveč je med tokom in napetostjo fazni zamik. B) Membrane se obnašajo
kot kondenzatorji in ne prepuščajo enosmernega električnega toka, ki lahko zato
teče le po medceličnem prostoru. Po drugi strani lahko izmenični tok teče tudi
skozi celice. C) Pri meritvi bioimpedance na telo priključimo štiri elektrode ter
merimo, kako se s frekvenco spreminjata amplituda toka in napetosti ter fazni
zamik med njima. Na osnovi te meritve lahko ocenimo, delež maščobe v telesu in
količina tekočine v medceličnem prostoru.

Ker je impedanca odvisna od vrste tkiva, lahko meritev impedance te‑
lesa poda informacijo o deležu telesnih maščob in o količini tekočin v med‑
celičnem prostoru. Pri klinični meritvi bioimpedance na pacientovo roko
in nogo po navadi priključimo štiri elektrode: skozi dve v telo dovajamo
izmenični tok z amplitudo nekaj μA, na drugih dveh pa merimo amplitudo
in fazni zamik napetosti (slika 17.4C) ter tako izmerimo odvisnost bioimpe‑
dance od frekvence. Iz take meritve lahko npr. ocenijo, kako se pri dializi
spreminja količina vode v medceličnini in kaj se dogaja z deležem maščob
v telesu med prehransko terapijo. Omenimo še, da se tudi mnoge »pa‑
metne« osebne tehtnice že ponašajo s funkcijo določanja maščob v telesu,
vendar pa te naprave bioimpedanco ponavadi merijo le pri eni frekvenci
(50 kHz) in so zato precej nenatančne.

Za konec poglavja o električnem toku si poglejmo, kakšne poškodbe
lahko v telesu povzroči električni udar. Električni tok na telo deluje pred‑
vsem preko dveh mehanizmov. Prvi je termični, saj se tkivo zaradi svoje
upornosti pod vplivom električnega toka segreva. Toplota, ki se sprosti
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zaradi toka, je produkt moči in časa izpostavljenosti toku,Q = Pt = RI2ef t.
Ožganine in opekline so zato pogoste spremljevalke električnega udara.

Drugi pomemben učinek toka na tkiva je biološki, saj tok vpliva na
vzdraženje celic (predvsem nevronov in mišičnih celic). Če je tok majhen,
ga zaznamo le kot ščemenje, večji tok pa lahko povzroči nehoteno krčenje
mišic. Ponesrečenec zaradi tega npr. ne more izpustiti žice, iz katere ga je
streslo, ko jo je prijel z roko. Dovolj velik električni tok lahko povzroči tu‑
di fibrilacijo srčnih ventriklov (tabela 17.2). Velik delež smrtnih primerov
zaradi električnega udara je tako povezan prav s srčnim zastojem. Po dru‑
gi strani lahko vetnrikularno fibrilacijo prekinemo ravno z dovolj močnim
tokom skozi srce, ki srce za hip »resetira« in mu omogoči, da začne spet
normalno biti. Ta postopek imenujemo defibrilacija, aparat, ki ga pri tem
uporabljamo pa defibrilator.

vpliv enosmerni tok izmenični tok (60 Hz)

meja zaznave 3,5 mA 0,7 mA

meja bolečine 41 mA 6 mA

popoln krč mišice 60 mA 15 mA

ventrikularna fibrilacija 500 mA 100 mA

Tabela 17.2: Pregled vplivov električnega toka na človeško telo (povzeto po [9]).
Vrednosti so približne, saj je dejanski vpliv odvisen od mnogih dejavnikov, po‑
leg tega je zaradi etičnih razlogov težko izvajati natančne in kontrolirane meritve
vplivov velikega toka na telo. Po nekaterih drugih podatkih lahko do fibrilaci‑
je srčnih ventriklov pride že pri nižjem toku in je tok 500 mA dovolj velik že za
njihovo defibrilacijo.

Primer 17.4: električni udar
Kako visoka napetost je smrtno nevarna? To vprašanje nima enostavnega odgo‑
vora, saj vpliv električnega udara na telo ni odvisen le od napetosti temveč tudi od
poti toka skozi telo, njegove frekvence, trajanja udara in še mnogih drugih dejav‑
nikov. Biološki učinki električnega toka s frekvenco nad 100 kHz so npr. majhni,
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saj tak tok ne vzbuja živcev.
Vseeno poskusimo oceniti najnižjo nevarno enosmerno napetost. Raziskave kaže‑
jo, da je upornost telesa, ki je preko velike površine v dobrem kontaktu z izvorom
(npr. preko mokre kože), približno 500Ω. Iz tabele 17.2 razberemo, da je z ne‑
kaj smole in ob dolgem kontaktu za resne težave dovolj že približno tok 30 mA.
Napetost, ki povzroči tak tok, je

U = RI = 500Ω · 0,03A = 15V , (17.30)

kar je že blizu napetosti na avtomobilskem akumulatorju! Čeprav v praksi pogosto
ni tako hudo, saj kontakt z izvorom ponavadi ni tako dober in po telesu steče bi‑
stveno nižji tok (suha koža lahko upor telesa npr. poveča na več tisoč Ω), je zgornji
račun dober dokaz, zakaj je pri delu z električnimi izvori potrebna ustrezna previ‑
dnost.

Kaj pa udar strele? Pri streli stečejo ogromni tokovi, tudi do 10 kA, zato lahko
udar strele povzroči nepopravljive poškodbe. Na srečo je udar strele pogosto zelo
kratek (lahko traja tudi le nekaj μs), poleg tega pa lahko pri njem velik del toka
steče po površini kože. Obnašanja toka skozi telo pri udaru strele še ne razumemo
v celoti, dolgoletna statistika pa presenetljivo kaže, da je verjetnost za preživetje
ob udaru strele več kot 50 %. Žal pa udar strele na preživelih pogosto pusti dol‑
gotrajne posledice.
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Poglavje 18

Izvori električne napetosti in toka
v telesu

Čeprav nas lahko visoka električna napetost ubije, pa brez elektrike tudi
ne bi mogli živeti. Električna napetost namreč neprestano nastaja v telesu
in poganja mnogo celičnih procesov, ključna pa je tudi za delovanje živ‑
cev in mišic. Napetosti, ki nastanejo v telesu, so sicer relativno majhne (do
približno desetinke volta), a vseeno dovolj velike, da jih lahko izmerimo in
na njihovi osnovi sklepamo o delovanju procesov v telesu. V tem poglavju
bomo spoznali, da je v telesu glavni izvor električne napetosti membranski
električni potencial, ki nastane kot posledica koncentracijskih gradientov
ionov preko selektivno prepustnih celičnih membran. Najprej si bomo s
pomočjo znanja termodinamike razložili nastanek t. i. mirovnega membran‑
skega potenciala, ki je prisoten v nevzdraženih celicah, nato pa še nastanek
akcijskega potenciala, do katerega pride med vzdraženostjo ter opisali, kako
lahko sinhrona depolarizacija celic privede do merljivih električnih tokov
v telesu. Na koncu si bomo ogledal še, kako napetost nastane na stiku med
kovino in raztopino, npr. pri elektrofizoloških eksperimentih ali ko paci‑
entom vgradimo kovinske vsadke.

18.1 Membranski potencial
Pri nekaterih vrstah celic se v mirovanju vzpostavi električna napetost med
notranjostjo in zunanjostjo celice. To napetost imenujemo mirovni mem‑
branski potencial. Ta potencial je ključen za celično funkcijo, v prvi vrsti
pa je povezan z dvema pojavoma: a) koncentracija nekaterih ionov je na
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eni strani membrane drugačna kot na drugi in b) membrana je selektivno
prepustna in nekatere ione prepušča bolje kot druge. Na membranski po‑
tencial najbolj vplivajo tisti ioni, pri katerih je koncentracijska razlika naj‑
večja in za katere je membrana najbolj prepustna. Pri živčnih in mišičnih
celicah v mirovnem stanju so to kalijevi ioni, katerih koncentracija je zaradi
aktivnega prekomembranskega transporta v celici večja kot zunaj (tabela
18.1). Električni potencial v celici v mirovnem stanju je zato približno 100
mV nižji kot zunaj nje. To je na prvi pogled presenetljivo – kalijevi ioni so
pozitivni, a je električni potencial bolj negativen na tisti strani membrane,
kjer je njihova koncentracija večja. Poglejmo si, zakaj je tako.

ion K+ Na+ Cl−

cnot [mM] 135 12 4

czun [mM] 4 140 116

P [cm/s] 10−7 10−9 10−8

Tabela 18.1: Tipične koncentracije ionov v živčnih celicah in izven njih ter tipične
prepustnosti membrane [22].

Izvor mirovnega membranskega potenciala je najlažje razumeti v okvi‑
ru t. i. Nernstove enačbe, ki opisuje kemijsko ravnovesje ionov na obeh stra‑
neh membrane. Za lažji začetek se spomnimo, kako smo opisovali kemij‑
sko ravnovesje za nenabite raztopljene delce. Če na eni strani membra‑
ne raztopimo dve vrsti topljencev, membrana pa je prepustna le za eno
vrsto, bodo le‑ti zaradi koncentracijske razlike prehajali na drugo stran
vse dokler ne bo njihov kemijski potencial enak na obeh straneh mem‑
brane (slika 18.1A). Ker je kemijski potencial za nenabite topljence odvi‑
sen le od koncentracije (spomnimo se enačbe 13.9 pri termodinamiki: µ =
µ0+RT ln c/c0), bo v ravnovesju koncentracija teh topljencev na obeh stra‑
neh membrane enaka. Za topljence, ki preko membrane ne morejo, seveda
ne velja, da morajo imeti na obeh straneh enak kemijski potencial.

Situacija se zelo spremeni, če so topljenci nabiti. Če je na eni strani
membrane raztopljena sol, membrana pa prepušča le katione, bodo le ti
začeli prehajati na drugo stran membrane, a se bo pri tem preko mem‑
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Slika 18.1: Shematični prikaz nastanka mirovnega membranskega potenciala. Na
sliki je polprepustna membrana označena z zeleno in prepušča le sive topljence.
A) Primer, ko so topljenci električno nevtralni. Če je na eni strani membrane večja
koncentracija topljencev, ki lahko prehajajo membrano, bodo ti topljenci mem‑
brano prehajali vse dokler njihova koncentracija na obeh straneh ne bo enaka. B)
Če so topljenci električno nabiti, se že pri prehodu majhnega števila topljencev
preko membrane ustvari električni potencial, ki njihovo prehajanje zaustavlja. V
ravnovesju se torej koncentraciji topljencev ne izenačita, preko membrane pa se
ustvari mirovni membranski potencial. Do mirovnega (ravnovesnega) membran‑
skega potenciala torej pride, če sta raztopini z različnima koncentracijama ionov
pregrajeni s selektivno prepustno membrano.

brane hitro vzpostavila električna napetost, ki bo njihovemu prehajanju
nasprotovala. Ko namreč kationi prehajajo preko membrane, za seboj pu‑
ščajo presežek anionov, ki katione vlečejo nazaj (slika 18.1B). Ob tem se
spomnimo primera 15.1, pri katerem smo videli, da mora za vzpostavitev
membranskega potenciala membrano prečkati zelo malo naboja (razmerje
med njima določa kapaciteta membrane), tako malo, da se koncentracija io‑
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nov na obeh straneh membrane praktično ne spremeni. V primeru nabitih
topljencev se ravnovesje tako vzpostavi zelo hitro in ne šele, ko je njihova
koncentracija enaka na obeh straneh membrane. Nernstovo enačbo dobi‑
mo, ko zapišemo pogoj za kemijsko ravnovesje nabitih topljencev, ki lahko
prehajajo preko membrane.

Kemijski potencial nabitih topljencev (ionov) ni odvisen le od njihove
koncentracije, temveč tudi od električnega potenciala. Spomnimo se na‑
mreč, da je kemijski potencial snovi enak prosti entalpiji na mol, prosta
entalpija pa je povezana z notranjo energijo. Ioni imajo v električnem po‑
tencialu tudi električno energijo, ki je enaka We = eφ (enačba 15.6), zaradi
česar bodo imeli ob prisotnosti električnega potenciala v kemijskem poten‑
cialu dodaten člen

µe =
We

n
=
NZe0φ

n
= ZFφ , (18.1)

kjer je φ električni potencial, Z je valenca ionov, F pa je Faradayeva kon‑
stanta, ki opisuje naboj enega mola osnovnega naboja in smo jo spoznal
že v enačbi 17.6, F = e0NA (v zgornjem računu smo upoštevali še, da je
n = N/NA). Kemijski potencial v prisotnosti električnega polja včasih ime‑
nujemo tudi elektrokemijski potencial. V ravnovesju je torej elektrokemijski
potencial ionov, ki lahko prehajajo membrano, enak na obeh straneh mem‑
brane:

µ0 +RT ln
cnot

c0
+ ZFφnot = µ0 +RT ln

czun

c0
+ ZFφzun , (18.2)

Če iz zgornje enačbe izrazimo membranski potencial (U = φnot − φzun), se
členi z µ0 in c0 pokrajšajo in dobimo Nernstovo enačbo

U = −RT
ZF

ln
cnot

czun
, (18.3)

ki opisuje zvezo med ravnovesnim membranskim potencialom in kon‑
centracijama ionov na obeh straneh membrane. Pri fiziologiji Nernstovo
enačbo pogosto zapišemo tudi v bolj praktični obliki, pri kateri v zgornjo
enačbo vstavimo fiziološko temperaturo (T = 37 °C = 310K) in logaritem
zapišemo z desetiško osnovo (upoštevamo tudi lnx = logx/ log e):

U ≈ −60mV
Z

log
cnot

czun
. (18.4)
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Iz tega zapisa Nernstove enačbe takoj vidimo, da 10‑kratna razlika kon‑
centracij enovalentnih ionov povzroči membranski potencial 60mV, 100‑
kratna pa membranski potencial 120mV.

Če v Nernstovo enačbo vstavimo koncentraciji kalija (tabela 18.1), za
mirovni membranski potencial dobimoU = −60mV·log(135/4) ≈ −92mV,
kar približno ustreza dejanski vrednosti v celicah. Koncentracij ostalih io‑
nov pri tem ni potrebno upoštevati, saj ti ioni ne morejo preko membrane
in za njih ne velja ravnovesje elektrokemijskih potencialov na obeh straneh
membrane. Čeprav je Nernstova enačba le približek, saj predpostavlja, da
je membrana prepustna le za eno vrsto ionov, pa je zelo uporabna za hitro
ocenjevanje membranskega potenciala (primer 18.1).

Primer 18.1: hiperkalemija

V nekaterih bolezenski stanjih lahko pride do spremembe koncentracije kalija v
izven celični raztopini. Če je kalija preveč, govorimo o hiperkalemiji, v naspro‑
tnem primeru pa o hipokalemiji. Ker je kalij ključen za mirovni membranski po‑
tencial, ima lahko sprememba njegove koncentracije hude posledice. Poleg tega je
njegova normalna izvencelična koncentracija majhna, zaradi česar lahko že majh‑
na sprememba koncentracije povzroči veliko spremembo v električnem potencia‑
lu. Za hitro oceno vpliva spremembe koncentracije kalija na mirovni membranski
potencial lahko uporabimo kar Nernstovo enačbo (enačba 18.4). Ocenimo, koliko
se spremeni potencial, če se koncentracija kalija zunaj celice iz 4 mM poveča na 8
mM:

U = −60mV · log(135/8) ≈ −74mV . (18.5)

Majhna sprememba v koncentraciji kalija lahko torej bistveno vpliva na mirovni
membranski potencial. Vbrizganje kalijeve raztopine v žilo je lahko zato smrtno
nevarno.

V živčnih in mišičnih celicah je za velike prekomembranske koncentra‑
cijske gradiente in s tem tudi za nastanek membranskega potenciala v prvi
vrsti odgovoren aktivni prekomembranski transport (npr. K+/Na+ črpal‑
ke). Do membranskega potenciala pa lahko pride tudi brez aktivnega pre‑
komembranskega transporta, saj je v celicah pogosto veliko nabitih marko‑
molekul, ki pomembno prispevajo k celotnemu naboju v celici, a ne morejo
preko membrane. V rdečih krvničkah je npr. veliko negativno nabitega he‑
moglobina (pH v rdečih krvničkah je malo nad 7), njihova membrana pa
je najbolj prepustna za klorove ione. Ker je v celicah veliko negativnega
naboja že na hemoglobinu, je negativnih klorovih ionov v njihovi notra‑
njosti manj kot zunaj. Po Nernstovi enačbi je torej električni potencial v
rdečih krvničkah nekaj manjši kot zunaj njih (za klorove ione je Z = −1).
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Na svoji poti po krvnem obtoku rdeče krvničke srečujejo z neprestanim
spreminjanjem koncentracij ionov v krvni plazmi, poleg tega se spreminja
tudi pH, zaradi česar preko membrane stalno prehajajo tudi kloridni ioni
(pa tudi voda, saj mora biti med uravnavanjem elektrokemijskih potenci‑
alov topljencev vseskozi uravnan tudi osmozni tlak). Elektrokemijsko in
osmozno ravnovesje, pri katerem pomembno vlogo igrajo makromolekule,
imenujemo tudi Donnanovo ravnovesje.

Nernstova enačba dobro velja v približku, ko je membrana prepustna
le za eno vrsto ionov. Zahtevnejši račun pokaže, da je razširitev Nernstove
enačbe za realne celice t. i. Goldmanova enačba, ki upošteva vse tri glavne
vrste ionov in prepustnosti za te ione:

U = −60mV log
PK · cK not + PCl · cCl zun + PNa · cNa not

PK · cK zun + PCl · cCl not + PNa · cNa zun
. (18.6)

V enačbi so znotrajcelične koncentracije kationov v števcu, znotrajcelične
koncentracije anionov pa v imenovalcu. Če bi predpostavili, da je prepu‑
stnost za kalij veliko večja od prepustnosti za ostale ione bi se Goldmano‑
va enačba poenostavila v Nernstovo. Če v Goldmanovo enačbo vstavimo
podatke iz tabele 18.1, dobimo vrednost −84mV, iz česar vidimo, da je
Nernstova enačba v tem primeru kar dober približek Goldmanovi.

Do sedaj smo govorili le o mirovnem membranskem potencialu. V ce‑
licah, ki se lahko vzdražijo (npr. v živčnih celicah), lahko poleg tega med
vzdraženjem nastopi tudi akcijski potencial, pri čemer se membranski po‑
tencial iz negativnega za kratek čas spremeni v pozitivnega. Do akcijskega
potenciala pride, ko se prepustnost membrane za Na+ ione hipno poveča
za več kot 1000‑krat, zaradi česar nekaj natrijevih ionov preide v celico in se
potencial spremeni na nekaj +10 mV (če bi povečano prepustnost za natrij
vstavili v Goldmanovo enačbo, bi dobili vrednost +42 mV, če pa bi upo‑
števali, da je sedaj prepustnost za natrijeve ione največja in bi jo vstavili v
Nernstovo enačbo, bi dobili celo +62 mV). Ob tem se spomnimo primera
15.1, v katerem smo pokazali, da spremembo potenciala povzroči že pre‑
hod majhne količine natrija, zaradi česar se med akcijskim potencialom
koncentracija natrija v celici praktično ne spremeni.
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18.2 Tkiva kot izvori električnega toka
Depolarizacija celice (nastanek akcijskega potenciala) povzroči nastanek
majhnega električnega toka v njeni okolici. Pri delovanju mišic in živcev
se sinhrono depolarizira veliko število celic, zato se ti tokovi seštejejo in
povzročijo majhne, a merljive spremembe električnega potenciala v okoli‑
ških tkivih in tudi na površini telesa. V medicini to dejstvo izrablja vrsta
diagnostičnih metod, pri katerih z merjenjem električne napetosti na povr‑
šini telesa dobimo informacijo o delovanju organov v telesu (primer 18.2).

Primer 18.2: Merjenje napetosti na telesu: EKG, EEG in EMG

Med aktivnostjo mišic in živcev se v telesu prožijo majhni električni tokovi, ki jih
lahko zaznamo kot spremembe električne napetosti na površini telesa. Z meritvijo
napetosti na površini telesa lahko zato dobimo informacijo o delovanju organov
v notranjosti telesa. Najbolj znana tovrstna metoda je elektrokardiografija (EKG),
s katero dobimo informacije o električni aktivnosti srčne mišice. Z elektroence‑
falografijo (EEG) analiziramo delovanje možganov, z elektromiografijo (EMG) pa
delovanje mišic in motoričnih živcev. Vse metode, pri katerih merimo napetost
na površini telesa so neinvazivne in za pacienta ne predstavljajo večje neprijetno‑
sti. Metodo EKG bomo podrobneje spoznali v naslednjem poglavju, postavitev
elektrod za EEG in EMG roke pa je shematično prikazana na spodnji sliki.

A B

Pri vseh elektrofizioloških metodah je zelo pomembno, da je električni stik med
elektrodami in kožo čim boljši. Med površinsko elektrodo in kožo zato nanesemo
poseben gel, ki je električno dobro prevoden in poskrbi za to, da med kovinsko
elektrodo in kožo ni zraka, ki je slab električni prevodnik. Če si želimo še pose‑
bej natančne meritve, lahko uporabimo tudi elektrode v obliki tankih igel, ki jih
zapičimo neposredno v preiskovano tkivo.
Pri metodi EMG lahko elektrode uporabimo ne le za detekcijo napetosti ampak
tudi za dovajanje napetostnih sunkov. S temi lahko mišice in živce umetno vzdra‑
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žimo ter nato opazujemo potovanje vzdražnega vala vzdolž okončine. Na ta način
je mogoče enostavno ugotoviti, kje vzdolž okončine je motorični živec poškodo‑
van.
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Slika 18.2: Depolarizacija celic v mišicah in živcih je izvor električne napetosti, ki
jo lahko zaznamo tudi na površini telesa. A) Shematični prikaz nastanka elektri‑
čnega toka v tkivu ob sinhroni depolarizaciji večjega števila celic. Depolarizacija
povzroči električni tok, katerega izvor je v ne‑vzbujenem delu tkiva, ponor pa v
tkivu, ki se depolarizira. Pri tem je smer električnega toka nasprotna smeri širje‑
nja depolarizacije. B) Prikaz električnega potenciala in toka v homogenem tkivu,
v katerem sta izvor in ponor toka. Izvor (+) in ponor (−) električnega toka pred‑
stavljata t. i. električni tokovni dipol. Vektor tokovnega dipola je označen zeleno
in kaže od − proti + (v smer premikanja depolarizacijskega vala v tkivu), tokov‑
nice električnega toka pa so narisane črno in tečejo od izvora proti ponoru. Skupaj
z električnim tokom se v tkivu pojavi tudi električni potencial, ki se niža vzdolž
tokovnic (najvišji je v pri + in najnižji pri −). Ekvipotencialne črte so na sliki
označene črtkano (pri višjih potencialih so bolj modre, pri nižjih pa bolj rdeče bar‑
ve, potencial 0 V je na sredini in je označen z oranžno). Električni potencial okoli
tokovnega dipola ima enako obliko kot pri dipolu, ki smo ga srečali pri elektrosta‑
tiki. Velikost vektorja tokovnega dipola je tem večja, čim večji tok in potencialne
razlike ustvarjata izvor in ponor.

Preden se v naslednjem poglavju posvetimo delovanju EKG, si oglej‑
mo preprost opis električnih tokov in potencialov, ki nastanejo ob sinhroni
depolarizaciji celic v telesu. Ko se po tkivu širi depolarizacijski val, steče
električni tok iz območja ne‑vzbujenih celic proti območju celic, ki se depo‑
larizirajo (slika 18.2A). Podobno steče električni tok tudi pri re‑polarizaciji
celic, le da so spremembe toka v tem primeru počasnejše, električno po‑
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lje pa je manjše. V primeru depolarizacije si lahko prvem približku ne‑
vzbujeno stran tkiva predstavljamo kot izvor, območje depolarizacij pa kot
ponor električnega toka, pri čemer električni tok steče tudi po okoliškem
tkivu. Tokovnice električnega toka v tkivu imajo ob tem podobno obliko
kot silnice v okolici električnega dipola (slika18.2B). Podobno kot pri elek‑
trostatiki lahko torej tudi v primeru depolarizacije celic definiramo vektor
dipola, ki ga v tem primeru imenujemo tokovni dipol. Če izvor toka ozna‑
čimo s +, ponor pa z −, kažejo tokovnice od + proti −, vektor tokovnega
dipola pa kaže od − proti +, kar je analogno definiciji električnega dipo‑
la pri elektrostatiki. Velikost vektorja tokovnega dipola je sorazmerna z
velikostjo toka, ki ga izvor in ponor poganjata po telesu.

Na osnovi dipolne slike si lahko nazorno predstavljamo električni po‑
tencial, ki ga izvor in ponor toka ustvarita v okoliškem tkivu. Podobno kot
v navadnem električnem krogu tudi pri tokovnem dipolu električni poten‑
cial pada vzdolž vsake tokovnice, pri čemer je najvišji v izvoru, najnižji pa
v ponoru. Ekvipotencialne črte okoli tokovnega dipola bodo imele torej
enako obliko kot ekvipotencialne črte okoli dipola pri elektrostatiki (sli‑
ka 18.2B). Ob spreminjanju območja depolarizacije in repolarizacije celic v
tkivu, se spreminjajo položaj, usmerjenost in velikost vektorja tokovnega
dipola, ob tem pa se se ustrezno spreminja tudi potencial v telesu in na
njegovi površini.

18.3 Elektrodna napetost in galvanski členi
O galvanskih členih ponavadi govorimo v povezavi z električnimi bateri‑
jami ali avtomobilskimi akumulatorji, a so pomembni tudi v medicini. Na‑
stanejo lahko namreč ob vsakem stiku med kovino in raztopino, npr. na
elektrodah pri elektrofizioloških eksperimentih ali pa na kovinskih vsad‑
kih v telesu.

Ko kovino potopimo v vodo, se začnejo kovinski kationi raztapljati v
raztopini, elektroni pa ostajajo v kovini (slika 18.3). Kovina zaradi razta‑
pljanja kationov postaja vse bolj negativno nabita glede na raztopino, raz‑
tapljanje pa se ustavi, ko se elektrokemijski potencial kationov v raztopini
(enačba 18.1) izenači s tistim v kovini.

Ravnovesno napetost med kovino in raztopino pri 1 M koncentraciji
kationov imenujemo tudi elektrodni potencial ali elektrodna napetost. Ta na‑
petost ni nujno majhna in lahko doseže tudi nekaj voltov! Različne kovine
se različno dobro raztapljajo in imajo zato različne elektrodne potenciale.
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V

Slika 18.3: Shematični prikaz nastanka elektrodne napetosti. Če kovino potopi‑
mo v vodo, se začnejo kovinski kationi raztapljati v vodo, elektroni pa ostanejo
v kovini. Zaradi tega se v ravnovesju med vodno raztopino in kovino vzpostavi
električna napetost. Bolj kot je kovina topna, bolj negativen bo njen ravnovesni
električni potencial. Višek kationov in elektronov se nabira blizu površine stika.

Po dogovoru elektrodni potencial merimo glede na standardno vodikovo
elektrodo, ki je platinasta elektroda z adsorbiranim vodikom. Po tem do‑
govoru imajo negativni elektrodni potencial tiste kovine, ki se raztapljajo
bolje od vodika, pozitivni elektrodni potencial pa kovine, ki se raztapljajo
slabše od vodika.

Situacija postane še bolj zanimiva, ko sta v raztopini v stiku dve različni
kovini, ki imata različna elektrodna potenciala. V tem primeru dobimo t. i.
galvanski člen z napetostno razliko. Pri galvanskem členu zato po raztopini
teče majhen električni tok, ki lahko v raztopini povzroči elektrolizo in s tem
kemijske spremembe.

Na elektrodni potencial moramo biti pozorni vsakič, ko pri elektrofizi‑
ologiji z elektrodami merimo napetosti v tkivih, saj nekaj napetosti vedno
povzroči že elektrodni potencial med elektrodo in raztopino. Pri vstavlja‑
nju kovinskih protez in vsadkov v pacienta pa se moramo izogibati nastan‑
ku galvanskih členov.
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Poglavje 19

EKG

Celice v srčni mišici se neprestano periodično depolarizirajo in repolari‑
zirajo in so zaradi tega glavni glavni izvor električne aktivnosti v telesu.
Električna aktivnost srca lahko na površini telesa povzroči do nekaj mV ve‑
like spremembe električnega potenciala, ki jih je mogoče enostavno izme‑
riti. To meritev imenujemo elektrokardiografija, grafični prikaz spreminjanja
napetosti med točkami na površini telesa v odvisnosti od časa imenujemo
elektrokardiogram, oboje pa označimo s kratico EKG.

Pri osnovnem EKG merimo časovne odvisnosti napetosti med rokama
in levo nogo, ki jih imenujemo tudi standardni bipolarni odvodi1. Napetost
med levo in desno roko imenujemo prvi odvod, napetost med levo nogo
in desno roko drugi odvod ter napetost med levo nogo in levo roko tretji
odvod (slika 19.1A). Zveze med odvodi in potenciali na rokah in nogi so
torej

UI = φLR − φDR ,

UII = φLN − φDR , (19.1)
UIII = φLN − φLR .

Ker tri elektrode pri standardnih bipolarnih odvodih tvorijo zaključeno
zanko, ti odvodi med seboj niso neodvisni in med njimi velja zveza UI +
UIII = UII , ki jo lahko enostavno izpeljemo iz zgornjih enačb.

V prejšnjem razdelku smo videli, da lahko trenutno električno aktiv‑
nost tkiva, po katerem se širi depolarizacijski val, opišemo z vektorjem

1Izraz odvod pri EKG ni povezan z matematičnim odvodom, temveč opisuje način na‑
mestitve in vezave elektrod. V angleškem jeziku se npr. odvod pri matematiki imenuje
derivative, pri EKG pa lead.
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Slika 19.1: A) Pri osnovnem EKG merimo časovno spreminjanje treh napetosti
med rokama in nogo, ki jih imenujemo bipolarni standardni odvodi: UI je napetost
med levo in desno roko, UII med levo nogo in desno roko ter UIII med levo no‑
go in levo roko. Električni dipol srca je označen z zeleno puščico in kaže v smeri
širjenja depolarizacijskega vala po srcu. Slike B, C in D prikazujejo vrednosti teh
odvodov pri treh vrednostih električnega dipola v približku t. i. Einthovenove‑
ga trikotnika, pri čemer so s črtkanimi črtami predstavljene ekvipotencialne črte
trenutnega potenciala, ki ga okoli sebe ustvarja dipol srca. Iz slik vidimo, da je vre‑
dnost posameznega odvoda enaka projekciji dipola na veznico med ustreznima
elektrodama. A) Električni dipol kaže navzdol, zaradi česar sta roki na negativnih
potencialih, noga pa na pozitivnem. Potenciala rok sta enaka, zato je UI = 0mV.
B) Električni dipol ima enako velikost kot pri sliki A, obrnjen pa je v desno. C)
Električni dipol srca ima še enkrat večjo vrednost kot na sliki A in je obrnjen nav‑
zdol. Vrednosti potencialov in napetosti so v primerjavi s sliko B podvojene.
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tokovnega dipola. Odvisnost standardnih odvodov od velikosti in sme‑
ri dipola srca si lahko nadzorno prikažemo ob predpostavki, da so elek‑
trode nameščene približno v oglišča enakostraničnega trikotnika s srcem
v središču (slike 19.1 B, C in D). Tak prikaz se po nizozemskem fiziologu
imenuje Einthovenov trikotnik. Iz slik je lepo razvidno, da bosta v primeru,
ko dipol kaže pravokotno na veznico med dvema elektrodama, elektrodi
na isti ekvipotencialni črti in bo napetost med njima enaka nič. Po drugi
strani bo napetost med elektrodama največja, če je dipol vzporeden veznici
med elektrodama. Iz opisanega se nam izlušči preprosto pravilo, ki velja
v približku Einthovenovega trikotnika: napetost med elektrodama je so‑
razmerna projekciji dipola srca na veznico med njima. Ob tem opazimo
tudi omejitev meritve EKG na rokah in nogi: ker elektrode ležijo na fron‑
talni ravnini telesa, tudi vrednosti odvodov predstavljajo projekcije v tej
ravnini, zato celotnega 3D vektorja dipola zgolj z merjenjem na rokah in
nogi ne moremo določiti. Za natančnejše določanje obnašanje depolariza‑
cij srčne mišice v sagitalni in transverzalni ravnini je potrebno uporabiti
12‑kanalni EKG, pri katerem so elektrode razporejene tudi po prsnem ko‑
šu (MaFijski primer 19.1).

Oglejmo si še primer obnašanja normalnega dipola srca med enim srč‑
nim utripom in ustrezne vrednosti standardnih bipolarnih odvodov (slika
19.2). V grobem ima normalni EKG tri odseke: najprej se depolarizirata
atrija (P val), nato ventrikla (odsek QRS), na koncu pa se zazna tudi repo‑
larizacijo ventriklov (T val). V vseh treh primerih se vektor dipola najprej
poveča in nato zmanjša, vmes pa se mu spreminja tudi smer, zaradi česar
vrh vektorja v vsakem intervalu opiše približno obliko elipse. Do najve‑
čje električne aktivnosti pride med depolarizacijo ventriklov, zato v tej fazi
dipol srca najbolj naraste. Spremembe napetosti so zato najbolj izrazite v
odseku QRS. V primeru na sliki so pri vsakem odseku največje spremembe
dipola srca v smeri pravokotno na veznico med levo roko in nogo, zato sta
UI in UII podobna, UIII pa je bistveno manjši. Signal repolarizacije atrijev
je šibek in se največkrat prekriva z odsekom QRS, zato ga EKG težje zazna.

Na koncu velja opozoriti, da se lahko zaradi anatomskih in funkcional‑
nih razlik med ljudmi tudi njihovi normalni EKG do neke mere razlikujejo,
EKG pa se spreminja tudi s starostjo in fizično aktivnostjo. Poleg tega ne
smemo pozabiti, da iz EKG dobimo le informacijo o električni aktivnosti
srca, ki je sicer zelo povezana s njegovo mehansko aktivnostjo, vendar pa
teh pojmom ne smemo kar enačiti. Izkušen zdravnik lahko na osnovi ne‑
normalnega EKG sklepa o nepravilnosti delovanja srca, za celostno sliko
njegovega delovanja in njegove zmožnosti črpanja krvi pa mora izmeri‑
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Slika 19.2: Shematični prikaz normalnega EKG. Leva slika prikazuje obnašanje
dipola srca med enim srčnim utripom, desne slike pa ustrezne standardne bipo‑
larne odvode. V enem utripu srca se njegov dipol trikrat izrazito poveča in po‑
manjša: prvi val ustreza depolarizaciji atrijev (P val, narisan črno), drugi nastane
zaradi depolarizacije ventriklov (QRS, narisan oranžno), tretji pa ob repolarizaciji
ventriklov (T val, narisan modro). Iz relativne višine odvodov lahko razberemo,
v kateri smeri se je dipol srca najbolj spreminjal – v prikazanem primeru je tretji
odvod najmanjši, prva dva pa sta si podobna, zato lahko sklepamo, da je glavna
os elipse QRS intervala pravokotna na veznico med nogo in levo roko, saj bodo v
tem primeru projekcije dipola na veznico med njima najmanjše.
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ti tudi druge relevantne informacije, npr. krvni tlak in ultrazvočno sliko
delovanja srca.

MaFijski primer 19.1: 12-kanalov za 3D EKG

S tremi standardnimi bipolarnimi odvodi lahko določimo le obnašanje dipola srca
v frontalni ravnini. Sodobne EKG naprave zato največkrat merijo 12‑kanalni EKG,
s katerim dobimo informacijo o 3D obnašanju dipola: poleg treh standardnih bi‑
polarnih odvodov izmerijo še 9 unipolarnih odvodov. Pri unipolarnih odvodih ne
merimo napetosti med dvema točkama na telesu ampak napetost med eno točko
na telesu in nekim standardnim potencialom (standardni potencial je ponavadi kar
povprečje potencialov rok in noge). Trije od unipolarnih odvodov so ponavadi t. i.
ojačani unipolarni odvodi rok in leve noge (označimo jih z angleškimi okrajšavami
aVR, aVL in aVF – ojačan = augmented), šest pa je prekordialnih in imajo elektrode
razporejene po prsnem košu (označimo jih z V1 do V6, slika A). S prekordialni‑
mi odvodi lahko bolje analiziramo nekatere detajle v električnem obnašanju srca,
predvsem pa tudi usmerjenost dipola srca pravokotno na frontalno ravnino, česar
z odvodi na rokah in nogi ne moremo.
Za meritev 12‑kanalnega EKG namestimo skupaj deset elektrod: elektrode za stan‑
dardne bipolarne odvode namestimo na začetek okončin (pri tem uporabimo tudi
elektrodo za desno nogo, ki služi za meritev referenčne napetosti), šest elektrod
pa na prsni koš. S pomočjo teh elektrod lahko izmerimo vseh 12 odvodov (I , II ,
III , aVR, aVL, aVF , V1, V2, V3, V4, V5, V6).
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Unipolarni odvodi so definirani tako, da merijo projekcije vektorja dipola srca na
veznico med središčem trikotnika in izbrano elektrodo. Unipolarne odvode rok
in noge je tako mogoče izraziti s standardnimi bipolarnimi odvodi: so kar srednje
vrednosti sosednjih standardnih bipolarnih odvodov. Unipolarni odvod noge je
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npr. definiran kot

UaVF
= φLN −

(φDR + φLR)

2
=

1

2
(UII + UIII)

Preprosto geometrijsko predstavo EKG z Einthovenovim trikotnikom lahko sedaj
dopolnimo. Videli smo, da so standardni bipolarni odvodi sorazmerni s projekci‑
jami dipola na veznice med dvema ustreznimi elektrodami, ki ležijo na stranicah
trikotnika. Podobno si lahko predstavljamo, da so unipolarni odvodi sorazmerni
s projekcijami dipola na veznice med središčem srca in ustrezno unipolarno ele‑
ktrodo. Ojačani unipolarni odvodi so tako sorazmerni s projekcijami na višine
trikotnika v smeri okončin, prekordialni odvodi pa merijo velikost dipola v smeri
od središča srca do posamezne prekordialne elektrode (slika B).
Zavedati se moramo, da je razumevanje EKG preko Enthovenovega trikotnika si‑
cer zelo nazorno, a je kljub vsemu le približek in vseh podrobnosti z njim ne mo‑
remo razložiti (približkov je pravzaprav veliko: da je mogoče trenutno električno
aktivnost srca opisati z dipolno sliko, da je središče električne aktivnosti srca ve‑
dno na sredini med elektrodami, da je telo homogena snov ...). Po preprosti sliki
bi moral biti npr. odvod I sorazmeren z odvodom V5, saj sta smeri obeh odvodov
vzporedni, a v praksi ni povsem tako.
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Poglavje 20

Magnetizem

V vsakdanjem življenju imamo z magnetizmom največ izkušenj preko raz‑
ličnih trajnih magnetov, npr. s kompasom, ki nam kaže smer proti severu,
ali pa z magneti, ki jih pritrdimo na hladilnik v kuhinji. V tem poglavju
bomo tudi spoznali, da so magnetni pojavi tesno povezani z električnimi
ter da imajo veliko uporabno vrednost v medicini.

20.1 Magnetno polje
Pri obravnavanju električnih pojavov smo spoznali, da električna sila med
električnimi naboji deluje »na daljavo« in jo lahko zato elegantno opiše‑
mo s pojmom električnega polja. Tudi magneti se med seboj odbijajo in
privlačijo »na daljavo«, zato bomo lahko tudi magnetne pojave opisovali s
pomočjo polja. Količino, ki opisuje, kako močno je magnetno polje, imenu‑
jemo gostota magnetnega polja in jo označimo z B⃗, enota za gostoto magne‑
tnega polja pa se po Nikoli Tesli imenuje tesla, T. Občutek za to količino
lahko dobimo iz podatkov, da se velikost gostote magnetnega polja na Ze‑
mlji giblje v intervalu od 25μT do 60μT (v Sloveniji je približno 48μT), v
napravah za slikanje z magnetno resonanco pa je polje reda velikosti ne‑
kaj T. Enota tesla je z drugimi fizikalnimi enotami povezana preko zvez
T = Vs/m2 = N/Am.

Električno in magnetno polje sta med seboj tesno povezana, vendar pa
je med njima tudi pomembna razlika: izvori električnega polja so točkasti
električni naboji, pri magnetizmu pa točkastih izvorov magnetnega polja
ne poznamo. Za vse trajne magnete velja, da polje na eni strani magneta
izvira, na drugi pa ponika. Magneti so torej dipolni izvor magnetnega po‑
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Slika 20.1: A) Izvori magnetnega polja imajo vedno dva pola, točkastih izvorov
pa ne poznamo. Magnetno polje trajnega magneta ima dipolno obliko: izvira na
t. i. severnem magnetnem polu magneta (severni pol je označen z N, north) in
ponika na južnem (S, south). Analogno električnemu dipolu, tudi magnetni dipol
opišemo z vektorjem magnetnega dipola p⃗m, ki kaže od južnega proti severnemu
magnetnemu polu. B) Zemlja je tudi trajni magnet. Njen južni magnetni pol je na
severnem geografskem tečaju, zato silnice Zemljinega magnetnega polja na nje‑
nem površju kažejo proti severnemu geografskemu polu. Magnetne igle v kom‑
pasu zato s svojim severnim polom kažejo proti severnemu geografskemu polju
zemlje (p⃗m igle kaže v smeri B⃗).

lja (slika 20.1A), pri katerem imajo silnice enako obliko, kot smo jo srečali
pri električnem dipolu (slika 15.3). Če bi magnet prelomili na pol, bi do‑
bili dva manjša dipolna magneta in ne izoliranih magnetnih monopolnih
izvorov. Neobstoj magnetnih nabojev ima pomembno posledico: magne‑
tno polje v tkivo prodira lažje od električnega, saj pri magnetnem polju ni
efekta senčenja, ki smo ga srečali v ionskih raztopinah. Zaradi istega razlo‑
ga je za magnetno polje zelo težko narediti zaščito pred magnetnimi vplivi
(spomnimo se, da je bila pri električnih pojavih za delovanje Faradayeve
kletke nujna zmožnost hitrega prerazporejanja električnega naboja).

Podobno kot smo v razdelku 15.4 polarnim molekulam pripisali vek‑
tor električnega dipola p⃗e, lahko magnetom pripišemo vektor magnetnega
dipola p⃗m, ki opisuje, kako močan izvor magnetnega polja je magnet in v
katero smer je obrnjen. Po dogovoru vektor magnetnega dipola kaže od
južnega proti severnemu polu magneta, magnetno polje pa izvira na se‑
vernem polu magneta ter ponika južnem. Magnetni dipol se v magnetnem
polju obnaša podobno kot električni dipol v električnem polju – če je polje
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homogeno, v njem čuti navor, ki ga obrne v smer polja (ne čuti pa magne‑
tne sile). Analogno enačbam za električno polje (enačba 16.1) lahko torej
tudi za magnetni dipol v homogenem magnetnem polju navor zapišemo z
vektorskim produktom

M = pmB sinα , (20.1)

kjer je α kot med magnetnim dipolom in smerjo gostote magnetnega polja.
Zaradi navora se magneti v magnetnem polju torej obrnejo tako, da njihov
severni pol kaže v smeri gostote magnetnega polja (v ravnovesju p⃗m kaže
v smer B⃗). Magnetni severni pol Zemlje je na južnem geografskem po‑
lu, igla kompasa pa tako s svojim severnim polom kaže proti severnemu
geografskemu polu (slika 20.1 B).

20.2 Izvormagnetnegapolja je tudi električni tok
V poskusih z elektriko so kmalu ugotovili, da trajni magneti niso edini
izvor magnetnega polja. Izkazalo se je namreč, da lahko magnetno polje
ustvarimo tudi z električnim tokom in da se okoli dolge ravne žice, po ka‑
teri teče električni tok, ustvarijo vrtinci magnetnega polja (slika 20.2A). Pri
tem gostota magnetnega polja pada obratno sorazmerno z oddaljenostjo
od žice. Velja

B =
µ0I

2πr
, (20.2)

kjer je I električni tok v žici, r je oddaljenost od žice, µ0 pa je indukcijska kon‑
stanta, µ0 = 4π ·10−7 Vs/Am. Smer silnic magnetnega polja lahko določimo
s t. i. Oerstedovim pravilom: če palec desne roke usmerimo v smer toka,
prsti kažejo v smer magnetnega polja. Zgornja zveza je eden od zapisov
Amperovega zakona, ki je eden od osnovnih zakonov elektromagnetizma in
opisuje, kako lahko premikanje električnega naboja ustvari magnetno po‑
lje.

V poglavju o elektriki smo spoznali, da med delovanjem živcev in mi‑
šic po naših telesih neprestano tečejo majhni električni tokovi. Zaradi Am‑
perovega zakona so vsi ti tokovi tudi izvori magnetnih polj, ki jih lahko
zaznamo na površini telesa. Ker pa so ta magnetna polja izjemno majhna
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Slika 20.2: Električni tok je izvor magnetnega polja. A) V okolici dolge ravne žice,
po kateri teče električni tok, se vzpostavijo vrtinci magnetnega polja. Smer vrtin‑
cev lahko določimo po naslednjem pravilu: če s palcem desne roke kažemo v smer
električnega toka, nam prsti kažejo v smer magnetnega polja. B) Če žico navijemo
v zanko, se prispevki posameznih kratkih odsekov žice seštejejo in zanka ustvarja
dipolno obliko magnetnega polja. C) Če zaporedoma navijemo več zank, dobimo
tuljavo, v kateri je homogeno magnetno polje. Jakost tega polja lahko enostavno
uravnavamo z električnim tokom, zato takemu sistemu pravimo tudi elektroma‑
gnet.

(reda velikosti pT in manj), za njihovo detekcijo potrebujemo izjemno na‑
tančne detektorje, ki niso poceni. V medicini se naravni magnetizem telesa
uporablja pri analizi delovanja možganov z metodo magnetoencefalografija
(MEG, primer 20.1), v zadnjem času pa se razvija tudi metoda magnetokar‑
diografija (MKG) za analizo električne aktivnosti srca. Še vedno pa so za
analizo električne aktivnosti v telesu mnogo dostopnejše in zato tudi bolj
razširjene elektrofiziološke metode, ki smo jih spoznali v prejšnjih poglav‑
jih (EKG, EMG, EEG).

Primer 20.1: MEG – magnetoencefalografija

V primeru 18.2 smo predstavili elektrofiziološke metode EKG, EEG in EMG, s ka‑
terimi lahko analiziramo električno aktivnost srca, možganov in skeletnih mišic
oz. živcev. Po Amperovem zakonu (enačba 20.2, slika 20.2A) je vsak električni tok
tudi izvor magnetnega polja, zato se ob vsaki električni aktivnosti v telesu na nje‑
govi površini pojavi tudi magnetno polje. Ta pojav najpogosteje uporabljamo pri
analizi delovanja možganov z metodo, imenovano magnetoencefalografija (MEG),
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v zadnjem času pa se hitro razvija tudi magnetokardiografija (MKG) za analizo
delovanja srca. Magnetne metode imajo v primerjavi z električnimi prednost, saj
magnetno polje bolje prodira skozi tkiva kot električno, zato z njimi v principu
bolje merimo električne aktivnosti globoko v telesu.
Slika A shematično prikazuje nastanek magnetnega polja zaradi električnih tokov
v možganih. Vidimo, da največje magnetno polje na površini glave ustvarjajo tan‑
gencialni tokovi, radialne električne tokove v možganih pa z metodo MEG težje
zaznavamo. Podobno kot pri EEG, lahko z MEG tokove zaznamo le, če je hkrati
aktivnih zelo veliko nevronov (vsaj nekaj 1000).

I

A B

I

B

B

Detektorje magnetnega polja po površini glave razporedimo podobno kot pri EEG,
pri čemer tudi tu velja, da čim več detektorjev razporedimo po glavi, tem bolj na‑
tančno sliko možganske aktivnosti dobimo. Sodobne naprave za MEG uporablja‑
jo tudi več kot 100 detektorjev. Ker električna aktivnost v možganih ustvarja le
zelo šibko magnetno polje (reda velikosti pT in manj), moramo za detekcijo ma‑
gnetnega polja uporabiti izjemno natančne detektorje. Po navadi uporabljamo t. i.
SQUID detektorje (superconducting quantum unit interference device), ki mora‑
jo biti ohlajeni na temperaturo nekaj K. Zaradi tega so naprave za MEG velike in
drage (slika B) [23].
Ocenimo še, kako velik električni tok v možganih povzroči nastanek magnetne‑
ga polja z gostoto 1pT na površini glave! Če predpostavimo, da tokovi v glavi
nastanejo v globini 4 cm, lahko s pomočjo Amperovega zakona izračunamo

I =
2πrB

µ0
=

2π · 0,04m · 10−12 Vs/m2

4π · 10−7 Vs/Am
= 0,2μA ,

kar je zares zelo majhen tok.

Amperov zakon lahko zelo koristno uporabimo za kontrolirano ustvar‑
janje magnetnega polja. Pri tem pa največkrat ne uporabljamo dolge ravne
žice, ampak žico raje zavijemo v zanko, saj s tem dobimo dipolni izvor ma‑
gnetnega polja (slika 20.2B). Če potrebujemo še močnejše polje, lahko žico
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navijemo večkrat in s tem naredimo tuljavo (slika 20.2C). Natančnejši račun
pokaže, da je gostota magnetnega polja v notranjosti tuljave homogena (ni
odvisna od oddaljenosti od žic) ter sorazmerna toku I , ki teče skozi tuljavo,
in številu navojev N , ki jih navijemo na enoto dolžine tuljave ℓ:

B =
µ0NI

ℓ
. (20.3)

Tuljava je zelo uporaben izvor magnetnega polja, saj lahko pri njej go‑
stoto magnetnega polja enostavno uravnavamo s spreminjanjem elektri‑
čnega toka. Tuljavo, ki jo uporabimo kot izvor magnetnega polja, imenu‑
jemo tudi elektromagnet. Glavna omejitev pri uporabi tuljav za ustvarjanje
močnega magnetnega polja je električna upornost žic – če namreč po žici
spustimo prevelik tok, se lahko žica zaradi svojega upora preveč segre‑
je in celo stali (primer 20.2). Za doseganje velikih magnetnih polj, ki jih
potrebujemo v napravah za slikanje z magnetno resonanco, moramo zato
uporabiti superprevodne tuljave, ki imajo praktično zanemarljiv električni
upor, a jih je težko izdelati in vzdrževati, zaradi česar niso poceni.

Primer 20.2: tuljava za slikanje z magnetno resonanco

Ocenimo, kolikšen tok bi moral teči po tuljavi iz barkene žice, da bi v njej ustvarili
magnetno polje, ki je potrebno za slikanje z magnetno resonanco (B ≈ 1T). Tuljava
naj ima premer 1 m in dolžino 1 m, uporabili pa bomo žico s premerom 1 mm.
Potrebni električni tok lahko izrazimo iz enačbe 20.3:

I =
ℓB

µ0N
,

pri čemer vidimo, da bomo za izračun potrebovali tudi število navojev žice v tu‑
ljavi N . V tuljavo z dolžino ℓ = 1m, lahko 1mm debelo žico navijemo približno
1000 krat. Za tok torej dobimo rezultat:

I =
1m · 1T

4π · 10−7 Vs/Am · 1000
= 796A .

Za doseganje velikega magnetnega polja mora torej skozi tuljavo teči ogromen
električni tok.
Ocenimo še, kolikšno moč bi ta tuljava trošila za ustvarjanje magnetnega polja. Če
bi za tuljavo uporabili bakrene žice s specifično prevodnostjo σ = 6 · 107 S/m, bi
bila električna upornost celotne žice v tuljavi (spomnimo se enačbe 17.4):

R =
x

Sσ
=

3142m
6 · 107 (Ωm)−1 · 7,9 · 10−7 m2 = 66Ω ,
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kjer smo celotno dolžino bakrene žice, navite v tuljavo, izračunali iz podatka za
obseg tuljave in število navojev: x = N ·2πr = 1000 ·2π ·0,5m = 3142m, površino
preseka žice pa smo izračunali iz njenega radija: S = πr2 = π · (0,5mm)2 =

7,9 · 10−7 m2. Čeprav se električna upornost žice v tuljavi ne zdi velika, pa je moč,
ki bi bila potrebna za ustvarjanje polja, enaka (enačba 17.3):

P = RI2 = 66Ω · (796A)2 = 42MW ,

kar je moč, primerljiva z močjo manjših elektrarn. Za vzdrževanje take moči bi po‑
trebovali izjemno močan izvor električnega toka, poleg tega pa bi se v žici sproščalo
ogromno toplote, ki bi žico hitro stalila. Tuljave v napravah za slikanje z magnetno
resonanco so zato izdelane iz superprevodnih materialov, ki imajo zanemarljivo
električno upornost.

20.3 Sila na električni naboj v magnetnem polju
Elektrika in magnetizem sta na več ravneh tesno prepletena. V prejšnjem
razdelku smo videli, da premikanje električnega naboja (električni tok) ustva‑
ri magnetno polje, velja pa tudi obratno: magnetno polje lahko z magnetno
silo deluje na električni naboj. V primerjavi z električno silo (enačba 15.3)
je magnetna sila malo bolj zapletena, saj deluje le na gibajoče se električno
nabite delce. Z enačbo lahko magnetno silo napišemo kot

F⃗m = e v⃗ × B⃗ , (20.4)

kjer je e električni naboj delca, v⃗ njegova hitrost, B⃗ pa gostota magnetnega
polja. V enačbi za magnetno silo je vektorski produkt hitrosti in gostote
magnetnega polja, zato je velikost magnetne sile sorazmerna sinusu kota
med hitrostjo in poljem, Fm = evB sinα, njena smer pa je pravokotna tako
na v⃗ kot tudi na B⃗ (spomnimo se definicije vektorskega produkta na sliki
1.5 v uvodnem poglavju). Magnetna sila deluje le na delce, ki imajo kom‑
ponento hitrosti pravokotno na smer polja. Magnetna sila nabitemu delcu
spreminja le smer hitrosti, ne pa tudi njene velikosti. Delec, ki se giblje pra‑
vokotno na magnetno polje, bo torej v njem krožil z enakomerno hitrostjo
(slika 20.3A).

Z našim znanjem fizike lahko brez težav izračunamo radij kroženja na‑
bitega delca v magnetnem polju: magnetna sila je namreč ravno radialna
sila, ki ustvarja radialni pospešek za kroženje (enačba 2.7). Zapišemo lahko

255



Medicinska biofizika (oktober 2023)

A B C

B

B

E

detektor

ionizacijska
komora

Fm

Fm

Fm

v

v

v

r

m/e	

it
en

zi
te

ta
 s

ig
n

al
a

Slika 20.3: A) Shematični prikaz gibanja negativno nabitega delca v magnetnem
polju (silnice kažejo pravokotno na list, stran od bralca). Magnetna sila na giba‑
joči se nabiti delec je vedno pravokotna na njegovo hitrost (enačba 20.4), zato na‑
boj v magnetnem polju enakomerno kroži. Smer sile določimo s pomočjo pravila
za vektorski produkt (slika 1.5), upoštevati pa moramo tudi predznak naboja. B)
Shematični prikaz preprostega magnetnega analizatorja v masnem spektrometru,
s katerim lahko določimo molekularno sestavo vzorca. Molekule v vzorcu ionizi‑
ramo, jih pospešimo v električnem polju ter jih usmerimo skozi magnetno polje z
izbrano gostoto. Radij zavijanja ioniziranih molekul v magnetnem polju je odvi‑
sen od razmerja med njihovo maso in nabojem (enačba 20.6), zato do detektorja
pridejo le molekule z ustreznim razmerjem m/e. S spreminjanjem gostote ma‑
gnetnega polja v analizatorju lahko spreminjamo razmerje m/e delcev, ki padejo
na detektor, ter tako določimo masni spekter vzorca. C) Shematični prikaz masne‑
ga spektra, ki prikazuje, koliko delcev smo detektirali pri katerem razmerju m/e.
Masni spekter tako prikazuje prisotnost različnih molekul v vzorcu in zato pred‑
stavlja »prstni odtis« vzorca.

torej
Fm = Fr ⇒ evB = mar ⇒ evB = mv2/r . (20.5)

Pri tem smo predpostavili, da je smer gibanja naboja pravokotna na smer
magnetnega polja in lahko zato izpustimo vektorski produkt v izrazu za
magnetno silo, upoštevali pa smo tudi, da je radialni pospešek ar = rω2 =

v2/r. Če iz zgornje enačbe izrazimo radij kroženja, dobimo

r =
mv

eB
. (20.6)

Radij kroženja nabitega delca v magnetnem polju je torej odvisen od raz‑
merja med njegovo maso in nabojem, kar s pridom izrabljamo v masnih
spektrometrih, to je napravah, s katerimi lahko analiziramo molekularno
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sestavo vzorcev (slika 20.3B). Z magnetno silo usmerjajo nabite delce tu‑
di v velikih pospeševalnikih, kjer delce z električnim poljem pospešujejo
do velikih hitrosti, magnetno polje pa poskrbi, da delci krožijo in ne uidejo
iz eksperimenta. Tako deluje npr. pospeševalnik v CERNu v Švici, pa tudi
Sinhrotron Elettra v Bazovici nad Trstom, v katerem s pomočjo sinhrotron‑
skega sevanja preučujejo molekularno strukturo bioloških materialov.

20.4 Magnetna indukcija
Poglavje o magnetizmu zaključimo z opisom pomembnega pojava, imeno‑
vanega magnetna indukcija, ki je nepogrešljiv za delovanje mnogih električ‑
nih naprav, srečamo pa ga tudi v medicini. Magnetno indukcijo opisuje
Faradayev zakon, ki pravi, da se okoli magnetnega polja, ki se s časom
spreminja, inducirajo vrtinci električnega polja. Zapis tega zakona z enač‑
bo je za naš nivo prezapleten, zato pa je na sliki 20.4A predstavljen grafično.
V nadaljevanju si bomo pogledali dva primera uporabe indukcije.

dB dB dB

E

dt dt dt

I

Ui

A B C

Slika 20.4: Shematični prikaz magnetne indukcije. A) Magnetna indukcija je eden
od osnovnih pojavov v elektromagnetizmu: magnetno polje, ki se spreminja s ča‑
som, okoli sebe inducira nastanek vrtincev električnega polja. B) Časovno spre‑
minjajoče magnetno polje ustvarimo s tuljavo, ki jo priključimo na izmenično na‑
petost. Če v tako magnetno polje postavimo električni prevodnik, se v njem indu‑
cirajo vrtinci električnega toka. Ta pojav izrabljajo indukcijske kuhalne plošče, pa
tudi transkranialna magnetna stimulacija (primer 20.3). C) Če v izmenično ma‑
gnetno polje postavimo sprejemno tuljavo, se v njej inducira izmenična napetost
Ui. Na tak način lahko električno energijo brezžično prenesemo iz oddajne v spre‑
jemno tuljavo. Ta pojav uporablja npr. brezžično polnjenje baterije v telefonu.
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Osnovni pogoj za indukcijo je magnetno polje, ki se s časom spremi‑
nja. Z našim znanjem elektromagnetizma že znamo narediti tako polje:
na tuljavo priključimo izmenično napetost. Skozi tuljavo bo tako tok tekel
izmenjaje v eno in v drugo smer, zaradi česar se bo tudi magnetno po‑
lje v tuljavi stalno spreminjalo in izmenjaje kazalo v eno in v drugo stran.
Če ob tako tuljavo postavimo prevodno snov, bo izmenično magnetno po‑
lje v snovi induciralo vrtince električnega polja, ki bodo poganjali vrtince
izmeničnega električnega toka (slika 20.4B). Na tak način deluje npr. in‑
dukcijska kuhalna plošča – tuljava je v kuhalni plošči, v dnu posode, ki
jo postavimo na ploščo, pa nastajajo vrtinci električnega toka, zaradi česar
se dno posode segreje. V medicini magnetno indukcijo izkorišča transkra‑
nialna magnetna stimulacija (TMS), pri kateri na enak način induciramo
električne tokove v možganih (primer 20.3).

Primer 20.3: TMS – transkranialna magnetna stimulacija

Izkušnje kažejo, da lahko nekatere duševne motnje zdravimo z električno stimula‑
cijo možganov, čeprav mehanizem takega zdravljenja še ni poznan. V preteklosti
se je v ta namen uporabljalo elektrokonvulzivno terapijo (t. i. elektrošoke), ki pa
je zaradi svojih stranskih učinkov in negativne slike v medijih prišla na slab glas
in se v Sloveniji ne uporablja več (v mnogih državah jo še vedno uporabljajo, saj je
pri nekaterih stanjih edina efektivna terapija).

dB
dt

I

A B

Novejša metoda za električno stimulacijo možganov je transkranialna magnetna
stimulacija (TMS) , ki uporablja magnetno indukcijo in je mnogo manj invazivna
od klasičnih elektrošokov. Pri tej metodi pacientu na glavo namestimo tuljavo in
skozi njo spustimo sunek električne napetosti. Tuljava za kratek čas ustvari ma‑
gnetno polje, ki prodre v notranjost možganov. Ker se to polje s časom spreminja,
se okoli njega inducira električni tok, ki stimulira možgane (slika A). Naprave za
TMS ponavadi uporabljajo celo dve tuljavi, v katerih tok teče v nasprotnih sme‑
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reh, s čimer je mogoče induciran električni tok bolje fokusirati na določen predel
možganov (slika B)[24].

Če v spreminjajoče se magnetno polje postavimo prevodno zanko ali
tuljavo, bodo inducirani vrtinci električnega polja v njej povzročili nasta‑
nek električne napetosti, ki bo sledila spreminjanju magnetnega polja (slika
20.4C). Če magnetno polje ustvarjamo s tuljavo, priključeno na izmenično
napetosti, se bo tudi v sprejemni tuljavi inducirala izmenična napetost z
isto frekvenco. Ker magnetno polje deluje na daljavo, tesen fizičen kon‑
takt med oddajno in sprejemno tuljavo ni potreben, zaradi česar lahko ma‑
gnetno indukcijo uporabimo za brezžičen prenos informacij in energije na
daljavo. Indukcijo tako že uporabljajo nekateri prenosni telefoni za brez‑
žično polnjenje baterije (sprejemna tuljava je v telefonu in je priključena na
baterijo, oddajna tuljava pa je v posebni podlogi, na katero položimo te‑
lefon), intenzivno pa se raziskuje tudi možnost uporabe te tehnologije za
brezžično polnjenje baterij električnih implantantov, npr. srčnih spodbu‑
jevalnikov.

Z enačbo lahko v tuljavi inducirano napetost zapišemo kot

Ui = −
dϕm

dt
, (20.7)

kjer je ϕm magnetni pretok skozi tuljavo, ki je definiran kot

ϕm = NSB cosα . (20.8)

Pri tem jeN število navojev v tuljavi, S je površina preseka tuljave,B gosto‑
ta magnetnega polja v tuljavi, kot α pa kot med gostoto magnetnega polja
in osjo tuljave (magnetni pretok je največji, če je gostota magnetnega polja
vzporedna osi tuljave). Iz enačbe vidimo, da se v tuljavi inducira nape‑
tost, če se s časom spreminja katera koli od zgornjih količin, ki definirajo
magnetni pretok. Pri brezžičnem polnjenju baterij se s časom spreminja
gostota magnetnega polja, v elektrarnah pa izmenično napetost ustvarjajo
tako, da tuljavo vrtijo v statičnem magnetnem polju (ali obratno) in tako
spreminjajo kot α .
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Poglavje 21

Valovni pojavi

V naravi srečujemo valovanja na vsakem koraku: valove na vodni gladini,
zvočno valovanje (zvok in ultrazvok), elektromagnetno valovanje (vidna
svetloba, radijski valovi, rentgensko sevanje ...), žarek elektronov v elek‑
tronskem mikroskopu itd. Čeprav so vsa ta valovanja na prvi pogled raz‑
lična, imajo tudi veliko skupnih lastnosti, kot so npr. lom, uklon, sipanje
in interferenca. Pomembna skupna lastnost je tudi, da se z valovanjem po
prostoru prenaša energija, ki izvira iz njegovega izvora. Energija valovanja
se lahko v snovi absorbira, zaradi česar imajo lahko valovanja vpliv na tki‑
vo in jih lahko zaznamo s čutili ali z ustreznimi detektorji. V tem poglavju
bomo najprej opisali splošne valovne pojave, ki so enaki za vse vrste valo‑
vanj, v naslednjih pa si bomo nato od bližje ogledali dve vrsti valovanja, ki
sta pri medicini še posebej pomembni: to sta zvočno in elektromagnetno
valovanje.

21.1 Osnovne značilnosti valovanj
Valovanje je nihanje, ki se širi po prostoru. Nastane lahko, če so deli pro‑
stora med seboj na nek način sklopljeni in se zaradi tega nihanje na enem
mestu širi v okolico. Na primer: ko v vodo pade kamen, voda na mestu
padca kamna zaniha gor in dol, njeno gibanje pa se zaradi interakcij med
sosednjimi molekulami prenaša tudi na vodo v okolici in valovanje se raz‑
širi po vodni gladini. Podobno je pri zvočnem valovanju: nihanje izvora se
prenese na okoliški zrak, ta povzroči nihanje svoje soseščine in tako naprej.
Pri tem je zanimivo, da molekule zraka ne potujejo po prostoru, ampak le
nihajo okoli svojih ravnovesnih leg. Ker je z vsakim nihanjem povezana
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energija, se s širjenjem valovanja po prostoru prenaša energija.
Širjenja valovanja v prostor je povezano s sklopitvijo med sosednjimi

deli prostora, zato je tudi hitrost širjenja valovanja (označimo jo s c) v splo‑
šnem odvisna od lastnosti prostora, tj. od snovi, po kateri se valovanje
prenaša. Hitrosti zvoka in svetlobe sta npr. v zraku drugačni kot v vodi.

Če izvor valovanja niha sinusno, bo sinusne oblike tudi valovanje (slika
21.1). Ko izvor opravi en nihaj, se valovanje razširi za eno valovno dolžino,
ki jo označimo z λ. Valovna dolžina je enaka razdalji med dvema sosednji‑
ma vrhoma ali med dvema sosednjima dolinama. Enako kot pri nihanju in
kroženju tudi pri valovanju velja zveza med nihajnim časom in frekvenco
valovanja: ν = 1/t0 (spomnimo se enačbe 2.5). Nihajni čas nam pove traja‑
nje enega nihaja, frekvenca pa število nihajev na časovno enoto. Enota za
frekvenco je hertz, 1 Hz = 1 s−1.

Pot, ki jo valovanje s hitrostjo c opravi v času enega nihaja, je po eni
strani enaka ct0, po drugi strani pa je to ravno valovna dolžina, zato velja
med frekvenco, valovno dolžino in hitrostjo valovanja naslednja zveza

λ = ct0 = c/ν oziroma c = λν . (21.1)

Za valovanja v splošnem velja, da njihovo frekvenco določa frekvenca ni‑
hanja izvora, hitrost valovanja je odvisna od snovi, po kateri se valovanje
širi, valovna dolžina pa je podana z zgornjo enačbo in je torej obratno so‑
razmerna frekvenci.

Slika 21.1: Shematični prikaz sinu‑
snega valovanja. Izvor (na sliki je
označen s piko) sinusno niha v nav‑
pični smeri, od njega pa se v smeri
x širi valovanje. S polno črto je na‑
risan val po dveh nihajnih časih od
začetka nihanja (t = 2t0, izvor se v
tem trenutku giblje navzgor), s črt‑
kano pa isti val četrt nihajnega časa
kasneje (t = 2,25t0). Odmik od rav‑
novesja označimo s s, valovno dolži‑
no valovanja z λ, maksimalen odmik
od ravnovesja (amplitudo) pa s s0.

x

s λ

s0
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Pri harmoničnem nihanju lahko časovno odvisnost odmika od ravno‑
vesja (s(t)) opišemo s sinusno funkcijo. Pri sinusnem valovanju je podob‑
no, le da je odmik od ravnovesja odvisen tudi od položaja v prostoru,
s(t, x). Primerjajmo enačbo za opis nihanja z enačbo za opis valovanja, ki
se širi v eni dimenziji, v desno po osi x in ima konstantno amplitudo:

Nihanje: s(t) = s0 sin(ωt− δ) . (21.2)
Valovanje: s(t, x) = s0 sin(ωt− kx− δ) . (21.3)

V obeh primerih je s0 amplituda, celotno vrednost v oklepaju imenujemo
faza, δ pa je fazni premik. Že pri matematičnem opisu nihanja smo vpeljali
krožno frekvenco (ω), ki je neposredno povezana s frekvenco nihanja in po‑
skrbi za to, da se v času enega nihaja pri izbrani vrednosti x faza spremeni
ravno za eno periodo (2π). Iz poglavja o nihanju se spomnimo, da velja
ω = 2πν (enačba 5.2). Pri valovanju analogno krožni frekvenci vpeljemo
tudi valovni vektor (k), ki je povezan z valovno dolžino, k = 2π/λ (v treh
dimenzijah je k zares vektor, ki kaže v smeri širjenja valovanja), ki poskrbi
za to, da se faza spremeni za eno periodo (za en val) tudi, če se ob izbranem
času premaknemo po osi x za eno valovno dolžino.

Enačba 21.3 opisuje valovanje, ki potuje v desno (proti pozitivnim vre‑
dnostim x). O tem se prepričamo, če opazujemo vrh vala, ki ima fazo
π/2. Če naj ta vrh vala potuje v desno, se mu mora ob večanju časa t ve‑
čati tudi koordinata x. Ker se mu ob tem faza ne sme spremeniti (opa‑
zujemo vrh vala z izbrano fazo), mora biti v oklepaju enačbe 21.3 pred x
zato predznak minus. Valovanje, ki potuje v levo (proti negativnim vre‑
dnostim x), pa bo torej opisala enačba s pozitivnim predznakom pred k:
s(t, x) = s0 sin(ωt + kx − δ). Pri tej enačbi se z večanjem t faza ohranja z
zmanjševanjem x.

Širjenje valovanja po prostoru si lahko najlažje ponazorimo, če nariše‑
mo valovne fronte ali pa žarke valovanja (slika 21.2). Valovne fronte so črte,
ki povezujejo dele prostora, ki nihajo v fazi, žarki pa kažejo v smeri širjenja
valovanja in so pravokotni na valovne fronte. V splošnem je lahko širjenje
valovanja po prostoru zelo zapleteno, pogosto pa se srečamo z dvema pre‑
prostima primeroma. O ravnem valu govorimo, če se valovanje širi le v eno
smer in so žarki vzporedni (ravni val opisuje enačba 21.3). Če pa so žarki
radialno divergentni (če jih npr. oddaja točkast izvor), govorimo v dvo‑
dimenzionalnem prostoru o krožnem valu (valovne fronte so krožnice), v
tridimenzionalnem prostoru pa o krogelnem valu (valovne fronte so povr‑
šine krogle). Krožni val se na primer pojavi na vodni gladini po padcu
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kamna v vodo, krogelne valove oddaja vsako točkasto svetilo, ki sveti v
prostor, ravni val pa srečamo pri laserju, katerega značilnost je ravno to,
da oddaja vzporedne žarke.

Slika 21.2: Shematični prikaz ravnega va‑
la (zgoraj) in krožnega vala (spodaj). De‑
sno so narisani ustrezni žarki in valov‑
ne fronte. Žarki kažejo v smer širjenja
valovanja, valovne fronte pa so pravoko‑
tne glede na žarke. Ravni val (vzporedne
žarke) srečamo pri npr. laserju, krožne
valove pa pri vseh točkastih izvorih, ki
valovanje oddajajo na vse strani okoli se‑
be.

Pregled osnovnih valovnih pojmov zaključimo z razčlenitvijo vrst valo‑
vanj glede na smer nihanja. Valovanju, pri katerem je nihanje pravokotno
na smer valovanja, pravimo transverzalno valovanje, če pa je smer niha‑
nja enaka smeri širjenja valovanja, je valovanje longitudinalno. V splošnem
se lahko smer nihanja pri transverzalnem valovanju neprestano naključno
spreminja, če pa je smer nihanja vseskozi dobro definirana, pravimo, da
je valovanje polarizirano. V nadaljevanju bomo spoznali, da je zvočno va‑
lovanje longitudinalno, saj molekule zraka pri njem nihajo v smeri širjenja
valovanja, elektromagnetno valovanje pa je transverzalno, saj jakost elek‑
tričnega in gostota magnetnega polja nihata v smeri, ki je pravokotna na
smer širjenja valovanja.

21.2 Energija valovanja
Vsa energija, ki jo valovanje nosi po prostoru, prihaja iz njegovega izvora.
Energijski tok valovanja je tako kar enak moči, ki jo oddaja izvor. Na primer:
če žarnica vsako sekundo odda 10 J energije, bo tudi celotni energijski tok
oddanega elektromangetnega valovanja enak 10 W. Ponavadi tako moč kot
tudi energijski tok označimo kar z enakim simbolom P . Podobno kot pri
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ostalih vrstah tokov (masnem, difuzijskem, toplotnem ...) tudi energijske‑
mu toku pripišemo gostoto energijskega toka

j =
P

S
, (21.4)

ki pove, koliko energije pride na časovno enoto skozi površino, ki je pra‑
vokotna na smer širjenja valovanja (slika 21.3A). Enota za gostoto energij‑
skega toka je W/m2. Če površina ni pravokotna na smer širjenja valova‑
nja, moramo pri računu gostote toka skozi površino upoštevati še kot med
površino in smerjo žarkov. Smer žarkov glede na površino ponavadi defi‑
niramo s kotom glede na pravokotnico na površino (α), zato se zveza med
j in P v splošnem zapiše kot j = cosαP/S. To formulo lahko preverimo s
preprostim miselnim poskusom: če so žarki vzporedni površini (α = 90°),
je gostota energijskega toka skozi površino očitno enaka 0, kar se ujema s
formulo, saj je cos(90°) = 0.

Vsi učinki valovanja so neposredno povezani z njegovo energijo. Ta‑
ko sta na primer od gostote energijskega toka odvisni glasnost zvoka in
jakost svetlobe. Tudi različno svetli deli na rentgenski sliki se med seboj
ločijo ravno zato, ker so bili svetli osvetljeni z manjšo gostoto energijskega
toka rentgenskih žarkov kot temni (in so zato na filmu povzročili šibkejšo
kemijsko reakcijo). Gostota energijskega toka je torej zelo pomemben pa‑
rameter valovanja, zato je v medicini nujno dobro poznavanje dejavnikov,
ki nanjo vplivajo. V tem razdelku bomo spoznali najosnovnejša dejavni‑
ka, zaradi katerih se valovanju spreminja gostota energijskega toka, to sta
konvergenca oz. divergenca žarkov in pa zmanjševanje gostote energijske‑
ga toka zaradi absorpcije, kasneje pa še kako na gostoto energijskega toka
vplivajo ostali valovni pojavi.

Med potovanjem valovanja skozi prostor se lahko gostota energijske‑
ga toka spreminja zaradi konvergence oz. divergence žarkov (slika 21.3).
Kvalitativno si spreminjanje gostote energijskega toka najbolje predstavlja‑
mo s pomočjo gostote žarkov na sliki. Če so žarki vzporedni (npr. pri rav‑
nem valu oz. pri laserju), je njihova gostota vseskozi enaka, zato se tudi
gostota energijskega toka z razdaljo ne spreminja. Če so žarki konvergen‑
tni (npr. če jih zberemo z lečo, slika 21.3B), se gostota energijskega toka
z razdaljo povečuje, če pa so žarki divergentni (npr. če izvor oddaja va‑
lovanje na vse strani oz. pri krogelnem valovanju, slika 21.3C), gostota
energijskega toka z razdaljo pada.
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A B C

Slika 21.3: (A) Gostota energijskega toka (j) opisuje, koliko energije pride na ča‑
sovno enoto skozi določeno pravokotno površino. Če ni izgub energije zaradi
absorpcije, si lahko gostoto energijskega toka nazorno predstavljamo z gostoto
žarkov na sliki. (B) Če so žarki konvergentni (npr. ko jih zberemo z lečo), se go‑
stota energijskega toka povečuje. (C) Če so žarki divergentni (npr. pri izvoru, ki
valovanje oddaja na vse strani okoli sebe), gostota energijskega toka z razdaljo od
izvora pada.

Kvantitativno lahko gostoto energijskega toka izračunamo, če znamo
določiti površino, skozi katero potuje valovanje z določenim energijskim
tokom. Na primer: če se valovanje iz točkastega izvora širi v prostor, so
žarki z oddaljevanjem od izvora vse bolj redki, saj pri tem prebadajo vse
večje površine (slika 21.4). Če se valovanje širi na vse strani od izvora,
žarki prebadajo kar površine krogel s središčem v izvoru, ki imajo površino
S = 4πr2. Če ni absorpcije, je celotni energijski tok vseskozi enak, zato
lahko gostoto energijskega toka izračunamo kot

j =
P

4πr2
, (21.5)

kjer je P moč izvora oziroma celoten energijski tok, ki ga oddaja izvor.
Podoben razmislek nam pove, da gostota energijskega toka pada s kva‑
dratom razdalje, j ∝ 1/r2, tudi v primeru, ko se krogelno valovanje ne širi
na vse strani in torej osvetljuje le del površine krogle okoli sebe.

Na zmanjševanje gostote energijskega toka lahko vpliva tudi absorpci‑
ja, saj se lahko pri potovanju valovanja skozi snov del energije valovanja
absorbira v snovi. Pogosto velja, da se na določeni razdalji vedno absorbi‑
ra enak delež energijskega toka, ne glede na njegovo začetno velikost. Če
na primer skozi 1 cm snovi pride ena četrtina energijskega toka, bo skozi
naslednji 1 cm spet prišla ena četrtina preostalega. Skozi 2 cm snovi tako
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Slika 21.4: Ko točkasti izvor valovanje oddaja v prostor, se površina, skozi katero
potujejo žarki, veča s kvadratom oddaljenosti od izvora. Gostota energijskega
toka valovanja zato pada s kvadratom oddaljenosti od izvora.

pride ena šestnajstina vstopnega energijskega toka. S formulo lahko tako
obnašanje lepo opišemo s pomočjo eksponentne funkcije, pri čemer lahko
uporabimo različne osnove (primer 1.6):

j = j0e
−µx = j02

−x/x½ . (21.6)

Konstanta µ v zapisu z naravno osnovo se imenuje absorpcijski koeficient,
konstanta x½ pa razpolovna debelina, saj je to debelina, v kateri se absorbira
ravno polovica vpadnega energijskega toka. Zvezo med obema konstan‑
tama smo izračunali že v primeru 1.6 – spomnimo se, da velja x½ = ln 2/µ.
Večja kot je absorpcija v neki snovi, večji je absorpcijski koeficient in kraj‑
ša je razpolovna debelina. Spomnimo se tudi, da sta oba zgornja zapisa
absorpcije ekvivalentna, včasih nam bolj prav pride prvi, včasih pa drugi.
Račun absorpcije rentgenskih žarkov je predstavljen v primeru 21.1.
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Slika 21.5: A) Shematični prikaz absorpcije valovanja v snovi. Če si gostoto ener‑
gijskega toka predstavljamo z gostoto žarkov, lahko absorpcijo ponazorimo z na‑
ključnim izgubljanjem žarkov v snovi – ko žarek izgine, preda svojo energijo mo‑
lekulam v snovi. B) Zaradi absorpcije se na določeni razdalji vedno absorbira enak
delež gostote energijskega toka, zaradi česar se gostota energijskega toka ekspo‑
nentno zmanjšuje s prepotovano potjo v snovi x. Po prepotovani dolžini, ki je
enaka razpolovni debelini x½, se gostota energijskega toka prepolovi, pri dolžini,
ki je enaka obratni vrednosti absorpcijskega koeficienta µ, pa se zmanjša za faktor
e−1 = 1/e ≈ 0,37 (enačba 21.6).
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Primer 21.1: razpolovna debelina za rentgenske žarke v svincu

Rentgenski žarki so ionizirajoče sevanje in so škodljivi za zdravje. Pri uporabi
rentgenskih žarkov se moramo zato ustrezno zaščititi, pri čemer lahko kot najbolj
enostavno zaščito uporabimo kar zaslon iz svinca, ki rentgenske žarke dobro ab‑
sorbira. Absorpcija rentgenskih žarkov v svincu je sicer odvisna od valovne dolži‑
ne: za žarke, ki se uporabljajo v mamografiji, je razpolovna debelina v svincu npr.
približno 10μm, za žarke, ki se uporabljajo pri CT slikanju, pa je razpolovna de‑
belina v svincu nekaj večja kot 100μm (več o absorpciji rentgenskih žarkov bomo
spoznali kasneje v poglavju o rentgenskem slikanju).

Za vajo izračunajmo, kako debela
mora biti zaščita iz svinca, da se bo
v njej absorbiralo 99,9% vpadnih re‑
tenskih žarkov. Račun naredimo za
žarke, ki se uporabljajo pri mamo‑
grafiji (x½ = 10μm).

j0 j	=	j /10000

Pb

x	= ?

POZOR

RENTGEN

Preden sežemo po kalkulatorju, se problema lotimo na pamet. Iz podatka o raz‑
polovni debelini lahko brez razmisleka razberemo, da se v 10μm debeli zaščiti
absorbira 50% žarkov, 50% pa jih pride skozi. Če je zaščita debela dve razpolovni
debelini, tj. 20μm, se v prvih 10μm absorbira polovico vpadnih žarkov, v drugih
10μm pa še polovica preostalih. Taka zaščita torej prepušča 0,5·0,5 = 0,25 oz. 25%
žarkov, absorbira pa 75% žarkov. Z enakim razmislekom pridemo do zaključka,
da tri razpolovne debeline debela zaščita (x = 30μm) prepušča le še 12,5%, ab‑
sorbira pa 87,5% žarkov. S tem smo si pridobili osnovni občutek za absorpcijo
in znamo že kar na pamet zaključiti, da snov, ki je debela n razpolovnih debelin,
prepušča ( 12 )

n vpadnih žarkov.
Naša naloga je, da izračunamo debelino, v kateri se absorbira 99,9%, kar pomeni,
da prepušča 0,1% = 1/1000 žarkov. Iz našega znanja matematike v dvojiškem
sistemu se spomnimo, da je 210 = 1024, iz česar lahko hitro zaključimo, da tisočino
žarkov prepušča zaščita z debelino približno 10 razpolovnih debelin, oz. v našem
primeru približno 100μm svinca.
S pomočjo kalkulatorja lahko to debelino izračunamo še bolj natančno. Ko absorp‑
cijski zakon (enačba 21.6) logaritmiramo, dobimo

ln
j

j0
= ln 2−x/x½ = − x

x½
ln 2 ,

iz česar lahko brez težav izrazimo debelino x, ki prepušča 1/1000 žarkov:

x = −x½ ln
j

j0
/ ln 2 = −10μm ln(1/1000)/ ln 2 = 99,7μm .

Za absorpcijo 99,9% rentgenskih žarkov je torej potrebna plast svinca, debela le
desetinko milimetra. Za primerjavo: absorpcijski koeficient rentgenskih žarkov v
betonu je približno 30 krat manjši, v mehkem tkivu pa približno 300 krat manjši
kot v svincu, torej je za absorpcijo 99,9% žarkov, ki se uporabljajo za mamografijo,
potrebnih približno 3 mm betona oz. 30 mm mehkega tkiva.
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21.3 Odboj in lom
Ko valovanje pride na mejo med dvema snovema, se ga v splošnem en
del odbije, en del pa se na meji med snovema lomi ter nadaljuje svojo pot
v spremenjeni smeri. Smeri odbitega in prepuščenega valovanja določata
odbojni zakon, ki pravi, da je odbiti kot enak vpadnemu, ter lomni zakon oz.
Snellov zakon, ki opisuje lomni kot (slika 21.6):

c1
sinα1

=
c2

sinα2

. (21.7)

Pri razumevanju lomnega zakona si lahko pomagamo s sliko 21.6B. Izvor
valovanja v drugi snovi je valovanje, ki trči na mejo med snovema. Fre‑
kvenca valovanja je torej v obeh snoveh enaka, hitrost pa je različna. Raz‑
dalji, ki sta na sliki označeni črtkano, valovanje tako prepotuje v istem času
t, dolžina ustreznih poti v prvi in drugi snovi pa je c1t in c2t. Do lomne‑
ga zakona pridemo, ko upoštevamo, da sta črtkani črti kateti trikotnikov z
isto hipotenuzo in zato velja zveza h = c1t/ sinα1 = c2t/ sinα2, pri čemer
smo dolžino hipotenuze označili s h. Ko iz te enačbe pokrajšamo t, dobimo
ravno lomni zakon (enačbo 21.7).

a2

c2
c <	c2	 1

a2

c2

prepuščeno
valovanje

a1

c1

a1 a1

c1

vpadno
valovanje

odbito
valovanje

h

A B

Slika 21.6: (A) Na prehodu iz ene snovi v drugo se del valovanja odbije, del pa se
ga lomi. (B) Shematični prikaz valovnih front valovanja na prehodu med snove‑
ma. Valovanje ima v obeh snoveh enako frekvenco, zato valovanje v obeh snoveh
razdaljo med dvema valovnima frontama prepotuje v enakem času. Osenčena tri‑
kotnika z črtkastima katetama imata zato isto hipotenuzo (njena dolžina je h).

Vidimo, da se pri prehodu v snov, kjer je hitrost širjenja manjša, valo‑
vanje lomi proti pravokotnici ter obratno. Pri velikem vpadnem kotu pri
prehodu v snov, v kateri je hitrost večja, lahko zato pride do totalnega odbo‑
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ja, saj lomni kot ne more biti večji od 90◦, oz. sinus lomnega kota ne more
biti večji kot 1 (slika 21.7). Totalni odboj opazimo na primer pri potaplja‑
nju v vodi, ko pogledamo poševno navzgor proti gladini – gladina vode v
tem primeru deluje kot zrcalo. Ko v enačbo 21.7 vstavimo pogoj za največji
možni lomni kot (sinα2m = 1), dobimo mejni vpadni kot, pri katerem se
pojavi totalni odboj:

sinα1m =
c1
c2
. (21.8)

V praksi pojav totalnega odboja izkoriščamo pri valovnem vodniku, po
katerem lahko valovanje potuje po zavitih poteh. Valovne vodnike za sve‑
tlobo imenujemo optična vlakna. Sestavljena so iz prozorne sredice in pla‑
šča, pri čemer pa je hitrost svetlobe v plašču večja kot v sredici. Svetloba, ki
potuje vzdolžno po sredici, se na meji s plaščem odbije nazaj in sredice ne
more zapustiti. Ker so optična vlakna upogljiva, lahko z njihovo pomočjo
svetlobo usmerjamo po poljubno zavitih poteh. Optična vlakna so osnovni
sestavni del endoskopskih metod, ki nam omogočajo gledanje v notranjost
telesa.

c1

c2

c >	c2	 1

A

D

B C

Slika 21.7: Shematični prikaz totalnega odboja. (A) Pri prehodu v snov, kjer je
hitrost večja, se valovanje lomi stran od pravokotnice (del valovanja pa se na pre‑
hodu odbije). (B) Če vpadni kot povečujemo, bo lomni kot slej kot prej dosegel
90°. (C) Do totalnega odboja pride, če je vpadni kot prevelik in bi moral biti iz‑
stopni kot po lomnem zakonu večji kot 90◦. (D) Optično vlakno je sestavljeno iz
prozorne sredice in plašča, ki sta narejena tako, da je hitrost svetlobe v plašču ve‑
čja kot v sredici (sredica je na sliki označena s temno sivo, plašč pa s svetlo sivo
barvo). Na meji med sredico in plaščem zato pride do totalnega odboja in žarki,
ki v sredico vstopajo pod ustreznim kotom, iz nje ne morejo več pobegniti.
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Primer 21.2: zrcala v naših telesih in ultrazvočni artefakti
Iz mnogih primerov optičnih iluzij vemo, da se valovni pojavi z nami včasih tudi
poigrajo. Ultrazvok je valovanje kot vsako drugo, zato tudi zanj veljajo vsi valovni
zakoni, zato na ultrazvočnih slikah ni vedno vse tako, kot se zdi na prvi pogled.
Na spodnji sliki je prikazan primer ultrazvočne iluzije, ki jo je povzročil odbojni
zakon [25].

A B

Na sliki A je prikazana transvaginalna ultrazvočna slika, ki prikazuje zdrav plod
v materinici (rdeča puščica), na sliki pa se vidi tudi podoben plod izven maternice
(modra črtkana puščica). Natančnejša analiza primera je pokazala, da je šlo pri
tej sliki za t. i. zrcalni ultrazvočni artefakt, do katerega lahko pride zaradi odbojev
ultrazvočnih žarkov na velikih zelo odbojnih površinah v telesu. Nastanek arte‑
fakta pojasni slika B. Ultrazvočna sonda (prikazana je s sivo barvo) zarodek zazna
na osnovi ultrazvočnega žarka, ki se odbije od zarodka (oddani in odbiti žarek sta
označena z rdečo barvo). Vendar pa sonda odboj od zarodka zazna tudi iz druge
smeri, saj žarek v tisti smeri naleti na zelo odbojno površino (v tem primeru gre
za steno mehurja, ki je prikazana z zeleno barvo), ki deluje kot zrcalo in žarkom
spremeni smer (pot tega žarka je prikazana z svetlo modro črtkano črto). Drugi
zarodek na sliki je torej le zrcalna slika pravega zarodka. Nepazljivost bi v tem
primeru lahko vodila do napačne diagnoze, saj lahko v redkih primerih zares pri‑
de do t. i. heterotopne nosečnosti, pri kateri je en zarodek v maternici, drugi pa
izven nje. Izkušeni radiologi poleg zrcalnih poznajo še veliko drugih ultrazvočnih
artefaktov, vsi pa so povezani s katerim od valovnih pojavov.

21.4 Seštevanje valovanj – interferenca

Če se v eni točki prostora srečata dve valovanj, je nihanje v tisti točki vso‑
ta nihanj obeh valovanj. Valovanja se lahko torej seštevajo, kar strokov‑
no imenujemo interferenca. V splošnem je lahko rezultat interference valo‑
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vanj zelo raznolik, saj se nihanja v prostoru lahko npr. ojačajo ali osla‑
bijo, rezultat pa je odvisen od amplitude, frekvence in faznega zamika
vpadnih valov. Vsi, ki so spretni v računanju s kotnimi funkcijami, lah‑
ko rezultat interference dveh valovanj vedno izračunajo kot vsoto s(t, x) =
s1 sin(ω1t− k1x− δ1) + s2 sin(ω2t− k2x− δ2).

Slika 21.8 prikazuje nekaj primerov interference dveh valovanj v eni
dimenziji. Če se seštejeta valovanji z enako frekvenco in amplitudo, je re‑
zultat interference valovanje z nespremenjeno frekvenco, amplituda pa je
odvisna od fazne razlike δ1−δ2 (slika 21.8 A, B in C). Če je faza valovanj ena‑
ka (tj. če se bodo vrhovi enega valovanja ujeli z vrhovi drugega, δ1−δ2 = 0),
bo rezultat interference valovanje s dvojno amplitudo (slika 21.8A). Če se
po drugi strani srečata valovanji z nasprotno fazo (δ1 − δ2 = π), se bosta
med seboj ravno odšteli (slika 21.8B). V primeru neke vmesne fazne razlike
je rezultat interference valovanje z neko vmesno amplitudo (slika 21.8C). V
splošnem torej zaradi interference dveh valovanj z enako frekvenco pride
do ojačitev in oslabitev valovanja.

Zanimiva sta tudi primera, ko se seštejeta valovanji z zelo različnima
frekvencama (slika 21.8D) ter ko se seštejeta valovanji s podobnima fre‑
kvencama (slika 21.8E). V drugem primeru (slika 21.8E) dobimo značilno
utripanje, saj je frekvenca končnega valovanja povprečje začetnih, hkrati
pa njegova amplituda utripa s frekvenco, ki je enaka polovični razliki zače‑
tnih frekvenc (spomnimo se adicijskega izreka za seštevanje dveh sinusnih
funkcij: sinα + sin β = 2 sin α+β

2
cos α−β

2
).

vsota

1. valovanje

2. valovanje

A B C D E

Slika 21.8: Shematični prikaz interference (seštevanja) dveh valovanj v eni dimen‑
ziji. V zgodnjih dveh vrsticah sta valovanji, ki se seštevata, v spodnji pa je njuna
vsota. (A) Seštevanje valovanj z enako frekvenco in enako fazo. (B) Seštevanje
valovanj z enako frekvenco in nasprotno fazo. (C) Seštevanje valovanj z enako
frekvenco in neko vmesno fazo. (D) Seštevanje valovanj z zelo različnima fre‑
kvencama. (E) Seštevanje valovanj s podobnima, a ne enakima frekvencama.

272



Medicinska biofizika (oktober 2023)

Zgornji primeri kažejo, da je lahko interferenca zelo raznolika že v eni
dimenziji. V dveh in treh dimenzijah pa je interferenčna slika lahko še
mnogo bolj zapletena. Slika 21.9 na primer prikazuje interferenco dveh
krožnih valovanj, katerih izvora sta blizu skupaj in nihata z isto frekvenco.
Na sliki vidimo, da pride na veliki oddaljenosti od izvorov v nekaterih
smereh do ojačitev, v drugih pa do oslabitev.

Slika 21.9: Shematični prikaz
krogelnega (ali krožnega) valo‑
vanja in interference dveh takih
valovanj z isto frekvenco, ki sta
med seboj oddaljeni za razdaljo
D. Izvora valovanj sta označena
s pikama. V interferenčni sliki
so značilne različne smeri ojači‑
tev in oslabitev valovanja.

D

Čeprav zgornja interferenčna slika ni enostavna, pa z našim znanjem
lahko določimo, v katerih smereh se bosta valovanji ojačali in v katerih
izničili. Interferenca, ki jo bosta žarka iz izvorov povzročila na veliki od‑
daljenosti od izvorov, bo odvisna od njune fazne razlike, ta pa je odvisna
od razlike dolžin poti, ki sta jih žarka prepotovala. Iz slike 21.10 razbere‑
mo, da je razlika poti žarkov v smeri pod kotom α enaka D sinα, kjer je
D razdalja med izvoroma. Če je razlika poti žarkov ravno cel večkratnik
valovne dolžine, se bosta žarka v tej smeri ujela v fazi in se zato seštela ta‑
ko kot na sliki 21.8A), če pa je razlika poti lih večkratnik polovice valovne
dolžine, se bosta žarka v tej smeri izničila (slika 21.8B). Če izvora nihata v
fazi, sta pogoja za ojačitev oz. oslabitev v smeri kota α torej:

Ojačitev: D sinα = Nλ (21.9)

Oslabitev: D sinα = (N +
1

2
)λ (21.10)

kjer je N celo število. Ker je lahko sinα največ 1, je vseh ojačitev največ
toliko, kolikokrat gre valovna dolžina v razdaljo med izvoroma,N ≤ D/λ.

Valovanja, ki imajo natanko enako frekvenco in stalno fazno razliko, so
med seboj koherentna. Časovno nespremenljivo interferenčno sliko dajo le
koherentna valovanja. V praksi vsa valovanja iz enakih izvorov niso nujno
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a

a

a

razlika v poteh žarkov

D

A B

Slika 21.10: (A) Žarka, ki izhajata iz dveh bližnjih izvorov, na veliki oddaljenosti
potujeta praktično v isti smeri (na sliki je smer označena s kotom α), vseeno pa
zgornji žarek opravi malenkost daljšo pot. Čeprav izvora nihata v fazi, ni nujno,
da bosta v točki srečanja tudi valovanji nihali v fazi. Fazna razlika je odvisna od
razlike prepotovanih poti. (B) Shematični prikaz razlike dolžin poti dveh žarkov
iz sosednjih izvorov, ki potujeta v smeri pod kotom α. Izvora sta označena z mo‑
dro piko, valovanji pa z zeleno sinusno krivuljo, izvora pa nihata v fazi. Razdalja
med izvoroma je D, razlika poti žarkov pa je D sinα in je torej odvisna od kota
α. Če je razlika poti enaka celemu večkratniku valovne dolžine, bosta valovanji
iz obeh izvorov potovali v fazi in se zato ojačili. Če pa bosta imeli valovanji na‑
sprotno fazo, se bosta izničili. V določenih smereh bodo torej nastale ojačitve, v
drugih pa ošibitve (slika 21.9).

koherentna. Ko se seštejeta dve nekoherentni valovanji, se rezultat njune
interference na nekem mestu stalno spreminja s časom in interferenčne sli‑
ke pogosto ne moremo zaznati. Pri žarnici, na primer, nihanje v različnih
delih žarilne nitke ni vedno v isti fazi in zato tudi krogelni valovi, ki izhaja‑
jo iz različnih točk v žarnici, nimajo stalne fazne razlike. Svetloba iz žarnic
torej ni koherentna in ne more povzročiti interferenčne slike. Po drugi stra‑
ni je laserska svetloba koherentna in jo lahko zato uporabimo pri različnih
pojavih, ki so vezani na interferenco, npr. pri holografiji. Tudi zvoka iz
sosednjih zvočnikov sta lahko koherentna, če le oba zvočnika oddajata isti
zvok, npr. isto glasbo, ki ni stereo. V takem primeru lahko interferenčno
sliko v prostoru tudi zaznamo – v nekaterih delih prostora je glasba gla‑
snejša kot v drugih.
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21.5 Uklon
Iz vsakdanjega življenja vemo, da se zvok brez težav širi tudi za vogale.
Ta valovni pojav imenujemo uklon. Uklon bomo lažje razumeli, če se spo‑
mnimo osnovne značilnosti valovanja: valovanje se širi tako, da se nihanje
v vsaki točki prostora prenaša na bližnjo okolico. Ko na primer val pride
skozi odprtino v steni, se nihanje točk na robu vala širi na vse strani v pro‑
storu in torej tudi za vogal, tj. v območje geometrijske sence (slika 21.11).
Situacija je podobna tudi, ko valovanje zadane ob oviro in se nato za oviro
razširi v območje njene geometrijske sence.

Slika 21.11: Shematični prikaz uklo‑
na valovanja. Ko ravni val pride do
odprtine ali ovire, se na drugi stra‑
ni uklanja tudi v območje geometrij‑
ske sence (na sliki je označena s sivo).
Uklon si lahko nazorno predstavlja‑
mo na osnovi Huygensovega nače‑
la, po katerem je vsaka točka valov‑
ne fronte izvor krogelnega valova‑
nja. Vsako naslednjo valovno fronto
dobimo, ko seštejemo vsa ta krogel‑
na valovanja. Na sliki smo Huygen‑
sovo načelo uporabili za konstrukci‑
jo valovne fronte, ki je tik za odprti‑
no.

Kvalitativno je pojav uklona torej lahko razumeti, bolj zapleteno pa je
razumevanje natančnega obnašanja vala za odprtino. Ko val pride na od‑
prtino in se nihanje pojavi v točkah odprtine, je vsaka točka v odprtini izvor
krogelnega valovanja in končna oblika vala za odprtino bo rezultat interfe‑
rence vseh teh krogelnih valovanj. V splošnem je tako uklon tesno povezan
z interferenco in je uklonska slika za odprtino ali oviro lahko zelo zapletena
(slika 21.12).

Izkaže se, da je za izrazitost uklonskih pojavov ključno razmerje med
valovno dolžino in velikostjo odprtine (oz. ovire). Intuitivno si lahko pred‑
stavljamo dva skrajna primera: če je odprtina zelo majhna v primerjavi z
valovno dolžino, deluje kot izvor krogelnega valovanja, če pa je odprtina
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Slika 21.12: Uklonska slika, ki nastane za majhno
okroglo odprtino. Na njej so vidni temni in sve‑
tli koncentrični krogi, ki so posledica interferen‑
ce krogelnih valovanj, ki izhajajo iz vsake točke
odprtine (strokovno se ti kolobarji imenujejo Ai‑
ryjevi diski).

zelo velika, gre valovanje skozi praktično brez uklona (slika 21.13 A in D).
V vmesnem območju, ko je velikost odprtine primerljiva z valovno dolži‑
no, se na drugi strani odprtine pojavi interferenčna slika, ki je lahko tudi
zelo zapletena (slika 21.13 B in C). V splošnem velja, da bo takoj za odpr‑
tino območje, kjer bo val približno raven, na veliki oddaljenosti pa se bo
valovanje širilo v prostor z divergenčnim kotom α. Z analizo, ki presega
obseg tega učbenika, je mogoče pokazati, da je globina bližnjega območja
(imenuje se tudi Fresnelovo območje) za odprtino s premerom D podana z
izrazom

LF ≈
D2

4λ
, (21.11)

divergenčni kot v oddaljenem območju (to območje se imenuje tudi Fraun‑
hoferjevo območje) pa je podan z izrazom

sinα ≈ λ

D
. (21.12)

Zaradi uklona je pomembno tudi razmerje med velikostjo izvora in va‑
lovno dolžino valovanja. Če je izvor valovanja majhen v primerjavi z va‑
lovno dolžino, se bo valovanje že na izvoru močno uklanjalo in bo izvor
deloval kot točkast izvor, ki valovanje oddaja na vse strani. Če si želimo
valovanje usmeriti v obliki ozkega snopa žarkov, potrebujemo izvor, ki
je veliko večji od valovne dolžine valovanja. Uklon je torej razlog, da se
zvoki iz naših ust »razlijejo« po celem prostoru: valovna dolžina tipičnih
frekvenc zvoka v zraku je namreč nekaj deset cm, kar je več od velikosti
ust (primer 21.3).

Za vse uklonske pojave je torej značilno, da je njihova izrazitost soraz‑
merna razmerju med valovno dolžino in velikostjo ovir, odprtin oz. izvo‑
rov. Uklon bo velik, če je valovna dolžina velika v primerjavi z dimenzijo
objekta. Na predmetih iz vsakdanjega življenja (D ≈ 10 cm) je tako uklon
zvoka (λ ≈ 30 cm) velik, uklona svetlobe (λ ≈ 500 nm) pa sploh ne opazi‑
mo. Zaradi uklona z valovanjem tudi ne moremo opazovati predmetov, ki
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A B C D

l/D ® Ą l/D ® 0l/D = 1 l/D = 1/6

LF

a

Slika 21.13: Shematični prikaz uklona ravnega vala na različno velikih odprtinah.
Odprtine so na levi in so označene z rdečo, val pa potuje proti desni. Če je odprtina
zelo majhna, deluje kot točkast izvor (A) če pa je zelo velika, gre valovanje skozi
brez uklona (D). V splošnem je slika za odprtino odvisna od razmerja med valovno
dolžino valovanja λ in velikostjo odprtine D. Če je λ nekaj manjša od D, nastane
takoj za odprtino območje, kjer je val približno raven (globina tega območja je
LF ), na veliki razdalji za odprtino pa valovanje divergira z divergenčnim kotom
α. Enako uklonsko sliko bi dobili, če bi bili na mestu odprtin enako veliki izvori
valovanja.

so veliko manjši od valovne dolžine, saj valovanje v takem primeru pred‑
met oblije in skoraj nemoteno potuje mimo. Uklon je torej razlog, da z
vidno svetlobo ne moremo slikati npr. posameznih molekul (λ ≈ 500 nm,
D ≈ od 0,2nm do nekaj nm), z ultrazvokom pa ne posameznih celic v te‑
lesu (λ ≈ 200μm, D ≈ 10μm).
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Primer 21.3: uklon zvoka na ustih in ušesih
Za vajo izračunajmo, kolikšen je uklon zvoka, ki prihaja iz naših ust, če ima fre‑
kvenco 200Hz (ta frekvenca približno ustreza najnižji tipični frekvenci, ki jo od‑
dajamo med govorjenjem). Hitrost zvoka v zraku pri sobni temperaturi je c =
343m/s, zato lahko hitro izračunamo valovno dolžino

λ =
c

ν
=

343m · s
s 200

= 1,7m .

Ta valovna dolžina je večja od velikosti ust (D ≈ 5 cm), zato pričakujemo, da bo
uklon zvoka na ustih zelo velik. Izračunajmo dolžino bližnjega območja (enačba
21.11) in divergenčni kot (enačba 21.12):

LF ≈
D2

4λ
=

0,0025m2

4 · 1,7m
≈ 0,4mm in

sinα ≈ λ

D
=

1,7m
0,05m

= 34⇒ α > 90° .

Vidimo, da se zvok s frekvenco 200Hz iz ust zares takoj »razlije« po vsem prostoru.
Če dvignemo glas, tako da se frekvenca zviša na 2000Hz (ta frekvenca približno
ustreza najvišji frekvenci, ki jo oddajamo med govorjenjem), bo uklon sicer malo
manjši, a ne bistveno. Zaradi desetkrat višje frekvence bo valovna dolžina sicer
desetkrat krajša (λ = 0,17m), a bo bližnje območje še vedno dolgo le 40 cm, diver‑
genčni kot pa bo tudi v tem primeru več kot 90 °.
Spodnja slika prikazuje dejansko izmerjeno smerno karakteristiko zvoka iz ust (A)
ter smerno občutljivost desnega ušesa (B) [26]. Zvoki iz ust, ki imajo nizko fre‑
kvenco, se za nami slišijo le 5 dB šibkeje kot spredaj (enoto dB bomo podrobneje
spoznali v naslednjem poglavju). Višje frekvence se uklanjajo malo manj, zato je ta
razlika pri njih malenkost večja, približno 12 dB. Pri sluhu je vloga uklona še bolj
izrazita, saj nizke frekvence, ki se najbolj uklanjajo, slišimo enako dobro, ne glede
na to iz katere smeri prihajajo.

A

1400 - 2000 Hz

0 dB 0 dB

-5 dB -5 dB

-10 dB -10 dB

125 - 250 Hz

200 Hz

2500 Hz

B
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21.6 Sipanje
Pojav, ko valovanje interagira z delci snovi in se zaradi tega razprši, ime‑
nujemo sipanje (slika 21.14A). Sipanje je tako tudi eden od pojavov, zaradi
katerega se zmanjšuje gostota energijskega toka žarkov na poti skozi snov
(podobno kot pri absorpciji, le da se pri slednji energija absorbira v snovi,
pri sipanju pa se žarki le razpršijo).

A B

Slika 21.14: (A) Shematičen prikaz sipanja na delcu snovi. Ko žarek valovanja
interagira s delcem, se lahko na njem razprši. (B) Interferenčna slika, nastala po
sipanju rentgenskih žarkov na molekulah DNK, ki jo je posnela Rosalind Franklin.
Na osnovi te slike sta Watson in Crick določila strukturo DNK.

V vsakdanjem življenju sipanje največkrat srečamo pri prehodu svetlo‑
be skozi snov. Če je neka raztopina na pogled motna, je to najverjetneje
zaradi sipanja svetlobe na delcih v raztopini. Mleko je npr. motno in belo
ravno zaradi sipanja svetlobe na delcih v mleku (proteinskih in lipidnih
skupkih oz. kapljicah). Drugi vsakdanji primer sipanja svetlobe srečamo,
ko podnevi pogledamo v nebo in ne vidimo črnega vesolja in zvezd, am‑
pak modro nebo. V tem primeru namreč vidimo svetlobo s sonca, ki se
siplje na molekulah v atmosferi. Ker se na majhnih delcih modra svetloba
siplje močneje kot ostale, je ta sipana svetloba modrikasta (na večjih del‑
cih, npr. na kapljicah v mleku ali oblakih, je sipanje drugačno, zato je v teh
primerih sipana svetloba bele barve).

Sipanje srečamo tudi povsod v medicini, kjer uporabljamo valovanje.
Sipanja ultrazvoka in rentgenskih žarkov v tkivu lahko povzroči manj ja‑
sne slike. Pri rentgenskem slikanju sipanje povzroča še dodatne težave, saj
razpršeni žarki iz preiskovanca sevajo na vse strani in se je potrebno pred
njimi dodatno zaščititi. Po drugi strani lahko sipanje izkoristimo tudi v
svoj prid. Z analizo sipanja rentgenskih žarkov na atomih v snovi lahko
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namreč določimo njeno strukturo. Pojav je še posebej izrazit če so atomi
v snovi razporejeni periodično (npr. v kristalih), saj sipani žarki med se‑
boj interferirajo, nastala interferenčna slika pa je odvisna od medsebojnih
atomskih razdalj. Tudi znamenita Watson in Crick sta strukturo molekule
DNK določila na osnovi interferenčnih slik rentgenskega sipanja na kri‑
stalu DNK, ki jih je posnela Rosalind Franklin (slika 21.14B). Veda, ki s
pomočjo rentgenskega sipanja preučuje strukturo snovi, se imenuje krista‑
lografija. Brez nje si ne moremo predstavljati sodobne biologije in medici‑
ne, saj je to osnovna metoda za določanje strukture kompleksnih bioloških
makromolekul, npr. proteinov.

21.7 Stoječe valovanje
V omejenih prostorih, kjer se valovanje odbija na stenah, lahko nastane
stoječe valovanje. V takem primeru prihaja do interference med vpadnim
in odbitim valovanjem in v prostoru nastanejo področja, kjer je amplituda
nihanje velika (t. i. hrbti stoječega valovanja) in območja brez nihanja (t. i.
vozli stoječega valovanja). Do stoječega valovanja pride npr. v struni na
kitari, ko jo zanihamo. Stoječe valovanje si lahko nazorno predstavljamo
tudi v piščali (slika 21.15). Ko valovanje pride do konca piščali, se odbi‑
je v nasprotno smer, pri čemer vpadno in odbito valovanje interferirata.
Na zaprtih koncih piščali zrak ne more nihati, zato so tam vozli stoječega
valovanja. Na sliki vidimo, da nastanek stoječega valovanja ni možen za
valovanja s poljubno valovno dolžino temveč le za tiste, ki imajo na zapr‑
tem koncu piščali vozle. Če je piščal na eni strani odprta, pa je tam hrbet
stoječega valovanja.

Slika 21.15: Shematični prikaz stoječega
valovanja v zaprti piščali (levo) in v pi‑
ščali, ki je odprta na eni strani (desno).
Na mestu, kjer je piščal zaprta, je vozel
stoječega valovanja, saj zrak tam ne mo‑
re nihati. Na odprti strani piščali je hrbet
stoječega valovanja. Piščal je torej reso‑
nator, v katerem se ojačijo osnovna fre‑
kvenca in njeni ustrezni višji harmoniki.

L L
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S pomočjo slike 21.15 izračunamo, da so v zaprti piščali možna le stoječa
valovanja, pri katerih je večkratnik polovice valovne dolžine enak dolžini
piščali: N λ

2
= L, v odprtih piščalih pa mora biti izpolnjen pogoj N λ

2
−

λ
4
= L, kjer je N naravno število. Z uporabo zveze med valovno dolžino,

frekvenco in hitrostjo valovanja lahko izračunamo tudi ustrezne frekvence:

Zaprta piščal: ν =
c

2L
N , (21.13)

Odprta piščal: ν =
c

2L
(N − 1

2
) . (21.14)

Do stoječega valovanja lahko torej pride le pri določenih frekvencah, pri t. i.
lastnih oz. resonančnih frekvencah. Najnižjo resonančno frekvenco piščali,
t. i. osnovno frekvenco, izračunamo, če v zgornji enačbi vstavimo N = 1.

Podobno kot piščal ima vsak omejen prostor svoje lastne frekvence, ki
so odvisne od njegove velikosti in oblike. Valovanja z ustreznimi frekven‑
cami se lahko v takem prostoru ojačijo, tista s drugačnimi pa ne, zato tak
prostor imenujemo tudi resonator. Akustična resonatorja sta npr. tudi go‑
vorni trakt (sapnik, usta z jezikom ...) in uho. Pri glasbenem inštrumentu
kot resonator deluje trup inštrumenta (npr. pri violini ali klavirju), stoječe
valovanje pa nastane tudi v strunah inštrumenta in v stenah trupa. Poleg
akustičnih resonatorjev poznamo tudi elektromagnetne, v katerih se lahko
ojači elektromagnetno valovanje.

21.8 Spekter
Valovanja pogosto nimajo le ene same frekvence temveč so vsota valovanj
z različnimi frekvencami. Ko na primer zaigramo določen ton na glasbe‑
nem inštrumentu, so v zvoku inštrumenta poleg osnovne frekvence tona
tudi višje frekvence, ki dajo zvoku inštrumenta njihovo značilno barvo oz.
zven. Zvoki različnih inštrumentov, ki zaigrajo isti ton, se med seboj lo‑
čijo ravno po teh višjih frekvencah, saj je osnovna frekvenca določenega
tona pri vseh inštrumentih enaka in določa zaigrani ton. Tudi sončna sve‑
tloba je sestavljena iz mnogih frekvenc oz. valovnih dolžin (barv), ki jih
razločimo šele, ko jo razklonimo v mavrico. Informacijo o frekvencah, ki
so prisotne v določenem valovanju, lahko razberemo iz spektra valovanja,
tj. porazdelitve gostote energijskega toka valovanja po frekvencah in ga
označimo z p(ν). Ker je frekvenca tesno povezana z valovno dolžino, lah‑
ko spekter seveda prikažemo tudi kot porazdelitev gostote energijskega

281



Medicinska biofizika (oktober 2023)

toka po valovnih dolžinah, p(λ). Kot primer je na sliki 21.16A prikazan
spekter sončne svetlobe, ki pade na površino zemlje .

p
(λ
)

λ λ

A B

Slika 21.16: Primera spektrov, tj. porazdelitve gostote energijskega toka valova‑
nja po valovnih dolžinah oz. frekvencah (A) Spekter sončne svetlobe, ki pade na
površino zemlje. Valovne dolžine vidne svetlobe (400 nm ‑ 750 nm) so v njem pri‑
bližno enakomerno zastopane. Škrbine v infrardečem delu spektra so posledica
absorpcije svetlobe v vodni pari v atmosferi. (B) Shematični prikaz absorpcijskega
spektra klorofila A. Spekter je prikazan kot odvisnost relativnega absorpcijskega
koeficienta od valovne dolžine. Iz spektra razberemo, da se v klorofilu modra (450
nm) in rdeča barva (650 nm) absorbirata veliko močneje kot ostale. Ostale barve
torej presevajo skozi liste oz. se od njih odbijajo, zaradi česar so listi zeleni.

Slika 21.17 prikazuje nekaj primerov spektrov zvoka. Levo na sliki je
prikazan zvok čistega tona a1, v katerem je le frekvenca 440 Hz. Ta ton
lahko na primer ustvarimo z glasbenimi vilicami, s katerimi uglašujemo
inštrumente. Vsa energija takega zvoka je zbrana le v zelo ozkem interva‑
lu frekvenc pri frekvenci 440 Hz. Če čistemu tonu dodamo še enega z višjo
frekvenco, bosta v spektru dve črti (slika 21.17B). V teh dveh primerih je
valovanje sestavljeno iz diskretnega števila frekvenc, zato je njun spekter
črtast. Na slikah 21.17 C in D sta prikazani valovanji, ki ju dobimo, če ton
a1 zaigramo na klavir in orgle. Vidimo, da je valovanje zvoka pri inštru‑
mentih sicer periodično, a je daleč od lepe sinusne oblike. V zvoku inštru‑
mentov je namreč združeno zelo veliko število različnih frekvenc, kar se
pozna kot zvezni spekter. Ker imajo orgle in klavir drugačno barvo zvoka,
se njuna spektra seveda razlikujeta, čeprav v obeh primerih igramo isti ton
a1 in je najvišji vrh (osnovna frekvenca) obeh spektrov pri 440 Hz. Spektri
valovanj v naravi so pogosto kombinacija črtastega in zveznega spektra.
Na primer: spekter sončne svetlobe, ki pade na površino zemlje na sliki
21.16 je sicer zvezen, a v njem manjkajo določene frekvence (»črte«), ki se
absorbirajo v atmosferi.
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p(ν) p(ν) p(ν) p(ν)

s s s s

1000 1000 1000 1000

5 5 5 5

2000 2000 2000 20003000 3000 3000 3000Hz Hz Hz Hz

ms ms ms ms

A B C D

valovanje

spekter

Slika 21.17: Shematični prikaz valovanj nekaterih zvokov (zgoraj) in njihovih
spektrov (spodaj). (A) Čisti ton s frekvenco 440 Hz oz. nihajnim časom 2,3 ms
(t. i. komorni ton a1), ki pogosto služi pri uglaševanju inštrumentov. (B) Primer, ko
komornemu tonu a1 pridružimo še ton a3, ki je dve oktavi višje in ima frekvenco
1760 Hz. (C) in (D) valovanji, ki ju dobimo, ko komorni ton a1 zaigramo na elek‑
trični klavir oziroma orgle. V obeh primerih je vrh spektra pri osnovni frekvenci
440 Hz (največ energije je pri tej frekvenci), razlikujeta pa se v višjih harmonikih.
Spekter zvoka inštrumentov je zvezen.

Spekter valovanja lahko določimo na več načinov. Spekter svetlobe do‑
bimo na primer, ko svetlobo razklonimo v mavrico s pomočjo steklene
prizme ali uklonske mrežice (več o tem kasneje v poglavju o elektroma‑
gnetnem valovanju). Če pa so frekvence valovanja dovolj majhne, lahko
izmerimo časovni potek nihanja valovanja (tj. zgornje vrstice s slike 21.17)
in iz njega izračunamo spekter s pomočjo matematične operacije, ki se ime‑
nuje Fourierova transformacija. Vsaki obliki valovanja namreč pripada na‑
tanko določen spekter. Furierovo transformacijo tako npr. uporabljamo
pri določanju spektrov zvoka in ultrazvoka, pa tudi pri določanju spektra
radijskih valov, ki jih uporabljamo pri slikanju z magnetno resonanco.

Od frekvence oz. valovne dolžine valovanja je odvisno veliko valovnih
pojavov. Tudi take frekvenčne odvisnosti pogosto prikazujemo na različ‑
nih spektrih. Absorpcija v snovi je npr. pogosto odvisna od frekvence
valovanja – valovanja z različnimi frekvencami se v snovi absorbirajo raz‑
lično, kar prikažemo z absorpcijskim spektrom snovi (slika 21.16B, primer
absorpcijskega spektra hemoglobina pa bomo srečali pri sliki 24.8).
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Poglavje 22

Zvok in ultrazvok

22.1 Osnovne lastnosti
Zvok in ultrazvok sta nihanje snovi, ki se v obliki valovanja širi po prosto‑
ru. Nihanje snovi je pri tem tako majhno, da ga z očmi ne vidimo, zaznamo
pa ga lahko npr. z ušesi ali mikrofoni. Ker za širjenje potrebujeta snov, ju
imenujemo tudi mehansko valovanje (po praznem prostoru – vakuumu
– se ne moreta širiti, saj v v njem ni snovi, ki bi lahko nihala). Osnovna
razlika med zvokom in ultrazvokom je njuna frekvenca: zvočno valovanje
lahko ljudje slišimo, frekvenca ultrazvoka pa je tako visoka, da je s svojimi
ušesi ne zaznamo. Frekvence slišnega zvoka so od približno 20 Hz do 20
kHz, frekvence ultrazvoka, ki se uporablja v medicini, pa so od približno
1 MHz do 20 MHz. Frekvence pod 20 Hz se imenujejo infrazvok.

Zvočno valovanje je longitudinalno, saj pri njem deli snovi med niha‑
njem odrivajo eden drugega in torej nihajo v smeri širjenja. V trdnih sno‑
veh je možno tudi transverzalno valovanje, pri katerem se nihanje prenaša
preko strižnih sil, a takemu mehanskemu valovanje ne rečemo zvok. Jasno
sliko o naravi zvoka dobimo, če si predstavljamo, kako potuje od izvora
do sprejemnika (slika 22.1). Izvor zvoka so lahko vse površine, ki nihajo
z ustrezno frekvenco in katerih nihanje se prenaša na okolico, na primer
glasilke ali pa membrana v zvočnikih. Ko površina odriva molekule zraka
v svoji okolici, se nihanje prenese tudi na njih, njihovo nihanje se prenese
na njihovo okolico in zvok se tako razširi po prostoru. Ko delci snovi ni‑
hajo okoli svoje ravnovesne lege, v snovi izmenično nastajajo razredčine
in zgoščine, tj. območja z znižanim in povišanim tlakom. Ko zvok končno
pripotuje do ušesa, v njem zaniha bobnič, ta pa svoje nihanje preko kla‑
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divca, nakovalca in stremenca prenese v nihanje tekočine v polžu. V polžu
so čutne celice, ki informacijo o nihanju preko slušnega živca prenesejo v
možgane.

nihanje izvora
(frekvenca ν)

smer širjenja
(hitrost c)

Δp
patm

zr
ač

n
i t

la
k

valovna dolžina l

Slika 22.1: Shematični prikaz zvočnega valovanja na njegovi poti od izvora do
ušesa. Izvor (npr. membrana v zvočniku) niha levo‑desno in pri tem odriva mo‑
lekule zraka v soseščini. Te zato zanihajo z enako frekvenco kot izvor ter pri tem
odrivajo svoje sosede in nihanje tako potuje naprej po prostoru. Ko nihanje zraka
pride do bobniča, zaniha tudi ta in preko srednjega ušesa nihanje prenese v polža
v notranjem ušesu, kjer nihanje zaznajo čutnice in o tem po slušnem živcu obve‑
stijo možgane. Zaradi nihanja molekul v snovi izmenično nastajajo razredčine in
zgoščine. V razredčinah je tlak manjši v zgoščinah pa večji od normalnega tlaka.

Hitrost zvoka v snovi je odvisna od tega, kako težko je snov stiskati
in od mase molekul (spomnimo se 2. Newtonovega zakona: večja, kot je
masa, večjo silo potrebujemo, da jo spravimo v gibanje). Iz mehanike se
spomnimo, da sta s temi lastnostmi v sorodu stisljivost in gostota snovi.
Zahtevnejši račun, ki presega okvire tega učbenika, pokaže, da je hitrost
zvočnega valovanja v snovi enaka

c =
1
√
ρχ

, (22.1)

kjer je ρ gostota, χ pa stisljivost snovi. Stisljivost trdnih snovi in tekočin je
zelo majhna, zato je hitrost zvoka v njih ponavadi velika.

V plinih se enačba za hitrost zvoka še poenostavi, saj sta gostota in sti‑
sljivost idealnih plinov med seboj povezani. Pri izračunu moramo upošte‑
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vati adiabatno stisljivost plina, χ = 1/κp (enačba 11.9), kjer p tlak plina, κ
pa je razmerje specifičnih toplot pri konstantnem tlaku in konstantni pro‑
stornini (κ = cp/cv, spomnimo se primera 11.2 pri Termodinamiki), saj se
zgoščine in razredčine izmenjujejo tako hitro, da med njimi toplota ne mo‑
re prehajati. Za zrak, ki je sestavljen v glavnem iz dvoatomnih plinov, velja
κ = 1,4. Ob upoštevanju splošne plinske enačbe pV = (m/M)RT in zveze
za gostoto ρ = m/V dobimo

cplin =

√
κRT

M
, (22.2)

kjer je R plinska konstanta, M molekulska masa plina, T pa temperatura.
Vidimo, da je hitrost zvoka v plinu z dano molsko maso M odvisna le od
temperature T , pri čemer je hitrost večja v plinih z manjšo molsko maso
(primer 22.1).

Ker so frekvenca, hitrost in valovna dolžina med seboj povezane (enač‑
ba 21.1), je pri dani frekvenci zvoka tudi njegova valovna dolžina odvisna
od snovi. Tipične hitrosti in valovne dolžine zvoka in ultrazvoka so prika‑
zane v tabeli 22.1.

Tabela 22.1: Hitrost zvoka v različnih snoveh ter valovne dolžine v zraku in tipič‑
nem mehkem tkivu, v katerem je hitrost zvoka c = 1540m/s (vrednosti so povzete
po [27], druga literatura lahko navaja tudi malo drugačne vrednosti).

snov hitrost zvoka [m/s]

zrak [20 °C] 343

voda 1498

maščoba 1475

možgani 1560

kri 1570

ledvice 1560

mišica 1580

kost 3360

frekvenca valovna dolžina [mm]

zrak mehko tkivo

1000 Hz 343 1540

100 kHz 3,4 15

1 MHz 0,34 1,5

3 MHz 0,11 0,5

10 MHz 0,03 0,15
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Primer 22.1: smešni glas s helijem in žveplovim heksafluoridom

Vsi poznamo srednješolsko potegavščino, ko se nam po vdihu helija smešno zviša
glas, po vdihu žveplovega heksafluorida pa naš glas postane bolj globok. Preden
se posvetimo opisu tega pojava, naj opozorimo, da je oboje nevarno početje – če
imamo v pljučih helij ali žveplov heksafluorid, v njih ni prostora za kisik in če tako
stanje traja predolgo, lahko potegavščina postane zelo nevarna. To še posebej velja
za žveplov heksafluorid, ki je težji od zraka in se nam lahko zaradi svoje teže dolgo
časa zadržuje v pljučih.
Zakaj se nam ob vdihovanju teh plinov v hipu spremeni glas? Oba plina sta iner‑
tna, tako da za spremembo glasu ne more biti odgovorna njuna kemijska reaktiv‑
nost. Odgovor moramo torej poiskati v fiziki. Spomnimo se, da je hitrost zvoka v
plinu odvisna od njegove molske mase. Povprečna molska masa zraka je 29g/mol,
molska masa helija pa je približno 7‑krat manjša (MHe = 4 g/mol), žveplovega he‑
ksafluorida pa 5‑krat večja (MSF6 = 146 g/mol). Po enačbi 22.2 je torej hitrost zvoka
v heliju približno

√
7‑krat večja, v žveplovem heksafluoridu pa

√
5‑krat manjša.

V poglavju o resonatorjih smo povedali, da frekvence glasu po eni strani določa ni‑
hanje glasilk, po drugi pa oblika našega govornega trakta, ki deluje kot resonator in
ojači le nekatere frekvence. Resnonančna frekvenca resonatorja je odvisna od nje‑
gove oblike in velikosti, pa tudi od hitrosti zvoka v njem (enačba 21.14). Razlog za
popačen glas so torej spremenjene resonančne frekvence našega govornega trakta:
po vdihu helija so približno

√
7‑krat višje, po vdihu žveplovega heksafluorida pa√

5‑krat nižje.

22.2 Jakost zvoka in decibeli
Gostoto energijskega toka zvoka imenujemo tudi jakost zvoka. Enota za ja‑
kosti zvoka je torej W/m2. V primerih, ko ima jakost zvoka zelo velik raz‑
pon, jo lahko opišemo tudi z nivojem jakosti zvoka, ki temelji na logaritemski
lestvici:

J = 10 log
j

j0
, (22.3)

kjer je j0 neka referenčna jakost zvoka. Enota pri uporabi logaritemske
lestvice je decibel (dB). Če se jakost zvoka desetkrat poveča, se nivo poveča
za 10 dB, če se jakost stokrat poveča, se nivo poveča za 20 dB itn. Omenimo
naj še, da v literaturi ni enotnega imena za nivo jakosti zvoka, ponekod J
imenujejo glasnost, drugje kar jakost, v angleški literaturi pa največkrat
SPL (sound pressure level).
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Logaritemska lestvica pride zelo prav pri opisovanju jakosti slišnega
zvoka, saj je uho zelo občutljivo čutilo in lahko zaznava zvoke z jakostjo od
približno 10−12 W/m2 do 1 W/m2 (še večje jakosti povzročijo okvaro ušesa).
Pri definiciji nivoja jakosti slišnega zvoka tako za j0 vzamemo najmanjšo
slišno jakost pri frekvenci 1 kHz (j0 = 10−12 W/m2), kar pomeni, da je v
logaritemski lestvici meja slišnosti pri 0 dB, prag bolečine pa pri 120 dB
(več o tem še kasneje pri poglavju o sluhu).

Decibele uporabljamo tudi za opisovanje relativne spremembe nivoja
jakosti. Rečemo npr., da »se je nivo jakosti ultrazvoka na poti skozi tkivo
zmanjšal za 30 dB«, kar pomeni, da se je gostota energijskega toka na poti
skozi tkivo zmanjšala za faktor 1000. Pri tem si je vredno zapomniti še, da
vsaka sprememba jakosti za faktor 2 pomeni spremembo nivoja jakosti za
3 dB (10 log 1

2
≈ −3).

Primer 22.2: hrup na cesti in računanje z decibeli

Vsak ve, da je hrup tem manjši, čim dalj
stran smo od njegovega izvora. Našo in‑
tuicijo si sedaj nadgradimo še s kvanti‑
tativnim izračunom s pomočjo enačb, ki
smo jih spoznali do sedaj. Predstavljaj‑
mo si delo na cesti in se vprašajmo koli‑
kšen hrup slišimo na oddaljenosti 1m od
pnevmatičnih kladiv, ki vsaka oddajata
hrup z močjo 1W.

r2

r1

Najprej se vprašajmo, kako se v našem primeru z razdaljo spreminja jakosti hrupa
oz. gostota energijskega toka. Predpostavimo, da delavca skupaj oddajata ener‑
gijski tok P , hrup pa se širi enakomerno na vse strani nad tlemi. V našem primeru
se torej hrup širi v obliki pol‑sfer stran od izvora. Ker ima pol‑sfera površino 2πr2,
lahko torej odvisnost gostote energijskega toka od razdalje zapišemo kot:

j(r) =
P

S
=

P

2πr2
. (22.4)

Na razdalji r1 = 1m bo torej jakost hrupa enaka

j1 =
P

2πr21
=

2W
2π(1m)2

= 0,3W/m2 , (22.5)

pri čemer smo upoštevali, da je skupna moč, ki jo oddajata dve pnevmatični kladi‑
vi, enaka 2W. Z lestvico jakosti nimamo izkušenj, zato izračunajmo še nivo jakosti
hrupa v decibelih (enačba 22.3):

J1 = 10 log
j1
j0

= 10 log
0,3W/m2

10−12 W/m2 = 115dB . (22.6)
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Tak nivo jakosti je torej ravno na meji bolečine, zato se brez glušnikov ni zdravo
dalj časa zadrževati v bližini. Kako se bo nivo jakosti spremenil, če se odmaknemo
na razdaljo r2 = 10m? Z enakim izračunom kot zgoraj lahko takoj izračunamo:

j2 =
P

2πr22
=

2W
2π(10m)2

= 0,003W/m2 , (22.7)

Jakost se je torej zmanjšala kar za 100‑krat (to bi lahko izračunali tudi na pamet,
saj je jakost odvisna od razdalje na kvadrat, kar pomeni, da če se razdalja poveča
za 10‑krat, se bo jakost zmanjšala za 102 = 100‑krat). In koliko je to v dB? Spet
uporabimo definicijo nivoja jakosti (enačba 22.3)

J2 = 10 log
j2
j0

= 10 log
0,003W/m2

10−12 W/m2 = 95dB . (22.8)

Tudi ta rezultat bi lahko izračunali na pamet, saj se spomnimo, da vsaka spre‑
memba energije za 10‑krat spremeni nivo jakosti za 10dB. Ko se jakost zmanjša za
100‑krat, se nivo jakosti torej zmanjša za 20dB.
Za konec se vprašajmo še, kako bi se spremenil nivo jakosti hrupa, ko gre eden od
delavcev na malico? Poskusimo to izračunati na pamet! Eno pnevmatično kladivo
oddaja pol manj energije kot dve. Jakost hrupa se bo zato v tem primeru prepolo‑
vila, nivo jakosti pa se bo zmanjšal le za 3dB (spomnimo se, da je 10 log 1

2 ≈ −3)!

22.3 Prehajanje med snovmi
Ko zvočno valovanje trči na mejo med dvema snovema, ga del prehaja v
drugo snov, del pa se ga odbije nazaj (spomnimo se poglavja 21.3). Zaradi
zakona o ohranitvi energije velja, da je jakost vpadnega valovanja enaka
vsoti jakosti odbitega in prepuščenega valovanja, jvpad = jodb + jprep. Na‑
tančna analiza, ki presega okvire tega učbenika, pokaže, da je razmerje
med jakostjo odbitega in vpadnega zvočnega valovanja odvisno od razlike
t. i. akustičnih impedanc snovi:

jodb
jvpad

=
(z1 − z2)2

(z1 + z2)2
, (22.9)

kjer smo akustično impedanco snovi označili z z. Akustična impedanca
snovi je odvisna od njene gostote in hitrosti zvoka v njej:

z = ρc . (22.10)
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Tipične akustične impedance in tipične deleži odbitega valovanja so prika‑
zani v tabeli 22.2. Vidimo, da sta akustični impedanci zraka in vode zelo
različni, zato se na prehodu med zrakom in vodo večino zvoka in ultrazvo‑
ka odbije. To zakonitost dobro poznamo iz vsakdanjega življenja: ko glavo
potopimo pod vodo, se nam zvoki iz okolice v trenutku zelo stišajo. V ta‑
beli vidimo, da se pri tem prehodu odbije kar 99,9% vpadnega zvoka, v
vodo pa ga torej vstopi le 0,1% (slika 22.2). Če se spomnimo še definici‑
je decibelov (enačba 22.3), lahko izračunamo, da se zvok in ultrazvok pri
prehodu v vodo utišata za 30dB (10 log 0,001 = −30).

Enačba 22.9 je simetrična na vrstni red snovi, med katerima prehaja
zvok. To pomeni, da se pri prehodu zvoka iz vode v zrak odbije natanko
tolikšen del zvoka, kot pri prehodu iz zraka v vodo.

Slika 22.2: Shematični prikaz odboja
zvoka in ultrazvoka pri prehodu iz zraka
v vodo. Ker se akustična impedanca zra‑
ka zelo razlikuje od akustične impedan‑
ce vode, se večino zvoka odbije. V vodo
vstopi le 0,1 % vpadne zvočne energije.

jvpad

j = 0.001 jprep vpad

zrak voda

j    = 0.999 jodb vpad

Tabela 22.2: Akustična impedanca različnih snovi [28] in deleži odbitega zvočnega
valovanja pri nekaterih tipičnih prehodih. Deleži odbitega valovanja so izračuna‑
ni s pomočjo enačbe 22.9.

snov z [10−6 kg / m2 s]

zrak [20 °C] 0,0004

voda 1,5

maščoba 1,3

možgani 1,6

kri 1,7

ledvice 1,6

mišičevje 1,7

kost 3,8 – 7,4

meja jodb/jvpad

zrak – voda 99,9%

zrak – mišica 99,9%

zrak – kost 99,97%

maščoba – ledvice 0,6%

možgani – kost 35%
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22.4 Sluh in govor

Človeško uho je zelo občutljivo in hkrati prilagodljivo čutilo, saj je zmožno
razločevati tako izredno tihe kot tudi zelo glasne zvoke (spomnimo se, da
smo ravno zato za nivo jakosti zvoka uvedli logaritemsko lestvico). Obču‑
tljivost ušesa pa je zelo odvisna od frekvence zvoka (slika 22.3). Frekvenčni
meji slišnosti sta približno 20 Hz in 20 kHz, najbolje pa zaznavamo zvok s
frekvencama med 3000 Hz in 4000 Hz. S starostjo se nam zgornja frekvenca
slišnosti niža.

Frekvenca vpliva tudi na naš občutek za glasnost zvoka, saj se nam dva
zvoka z enako jakostjo in različnima frekvencama ne zdita nujno tudi ena‑
ko glasna. Glasnost zvoka je zato fiziološka količina, ki je definirana tako,
da dva zvoka iste glasnosti vzbudita enak občutek v ušesu ne glede na svo‑
jo frekvenco. Enota za glasnost je fon in je določena tako, da pri frekvenci
1 kHz lestvica fonov ustreza lestvici nivoja jakosti slišnega zvoka v dB (za
definicijo dB se spomnimo enačbe 22.3), pri ostalih frekvencah pa se raz‑
merje ustrezno prilagodi. Ne glede na frekvenco ima zvok na meji slišnosti
glasnost 0 fonov, zvok na meji meje bolečine pa 120 fonov. Na primer, meja
slišnosti (glasnost 0 fonov) je za zvok s frekvenco 1 kHz pri nivoju jakosti
0 dB, za zvok s frekvenco 100 Hz pa pri nivoju jakosti 20 dB (slika 22.3).

2j [W/m ] J [dB]

-12
10 0

-8
10 40

-410 80

1 120

L

bobnič
notranje uho

srednje uho
sluhovod

10 100 1000 10k

govor

frekvenca [Hz]

meja slišnosti

meja bolečine

A B

Slika 22.3: (A) Shematični prikaz anatomije ušesa. (B) Približni prikaz frekvenčne
občutljivosti ušesa. Črtkani črti predstavljata približno frekvenčno odvisnost naj‑
manjše (meje slišnosti) in največje (meje bolečine) jakosti zvoka, ki jo lahko razloči
zdrava oseba (na desni osi so označen ustrezen nivo jakosti v decibelih). Občutlji‑
vost ušesa je največja med 3000 Hz in 4000 Hz, kak ustreza resonančni frekvenci
sluhovoda. Prikazano je še približno območje frekvenc in jakosti pri govoru.
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Poglejmo si še osnove delovanja ušesa. Anatomsko slušni organ raz‑
delimo na tri dele: v zunanjem in srednjem ušesu je zrak (razmejena sta z
bobničem), v notranjem ušesu pa so kanali z vodno raztopino in tkivom,
ki vsebuje čutnice za sluh in ravnotežje (slika 22.3). Zunanje in srednje uho
opravljata pomembno »fizikalno« nalogo: zvočno valovanje morata iz zra‑
ka prenesti v notranje uho s čim manj izgubami. Spomnimo se namreč, da
se akustični impedanci zraka in vode zelo razlikujeta, zato bi se zvok brez
pomoči zunanjega in srednjega ušesa pri prehodu v notranje uho skoraj v
celoti odbil (tabela 22.2 in slika 22.2).

Sluhovod je resonator v obliki odprte piščali (slika 21.15), saj je na eni
strani odprt, na drugi pa se zvok odbija od trdih sten notranjega ušesa.
Dolžina resonatorja (L) je približno 26 mm, kar ustreza osnovni lastni fre‑
kvenci približno 3500 Hz (L = λ/4, enačba 21.14). V sluhovodu se torej
relativno najbolj ojača zvok s frekvencami med 3000 Hz in 4000 Hz, in
tudi zato je v tem frekvenčnem območju naš sluh najbolj občutljiv (slika
22.3). Nihanje zraka v sluhovodu povzroči nihanje bobniča, saj je slednji
malo odmaknjen od sten notranjega ušesa in se ne nahaja v vozlu stoječega
valovanja. Bobnič je preko treh koščic (kladivca, nakovalca in stremenca)
mehansko povezan z notranjim ušesom, kar omogoča prenos nihanja bob‑
niča v nihanje raztopine v notranjem ušesu. Kako pomembna je funkcija
srednjega ušesa pove podatek, da se ob njegovi okvari občutljivost ušesa
poslabša za približno 20 dB.

Slušni del notranjega ušesa predstavlja v polža navit kanal z vodno raz‑
topino, vzdolž katerega je membrana iz tkiva s slušnimi čutnicami. Oblika
in zgradba kanala se z oddaljenostjo od začetka spreminjata, tako da ima
vsak del kanala svojo resonančno frekvenco (resonančna frekvenca pada z
oddaljenostjo od stremenca). Ko zvočno valovanje potuje po kanalu, različ‑
ne frekvence valovanja vzbudijo nihanje membrane v različnih delih kana‑
la. Notranje uho torej deluje kot frekvenčni analizator zvoka. V membrani
so čutnice z laski, ki se zaradi nihanja tkiva premikajo in mehansko gibanje
pretvarjajo v spremembo membranskega potenciala, ki po živcu potuje do
možganov. Čutnice pa niso le pasivni detektorji nihanja, saj se lahko tudi
same aktivno premikajo in tako preko zapletenega mehanizma povratnih
zank izboljšujejo zaznavanje zvoka. Po drugi strani z aktivnim premika‑
njem dlačic uho tudi samo oddaja šibek zvok, kar imenujemo otoakustična
emisija (OAE). OAE izkoriščamo pri diagnozi motenj v delovanju notra‑
njega ušesa – sluha novorojenčkov tako ne preizkušajo več s cingljanjem z
zvončkom, temveč z mikrofonom, s katerim v ušesu izmerijo OAE.
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Podobno kot zaznavanje zvoka je tudi produkcija zvoka pri človeku za‑
pleten proces in že majhne motnje v njegovem delovanju lahko vodijo do
govornih napak. Z raziskovanjem govora se ukvarja fonetika, mi pa se bo‑
mo tega širokega področja le bežno dotaknili. Izvora nihanja pri produkciji
zvoka sta nihanje glasilk in pa vrtinčenje zraka ob različnih stenah govor‑
nega trakta (žrelo, ustna in nosna votlina, jezik, zobje ...). Pri tem energija
za nihanja prihaja največkrat iz stiskanja zraka iz pljuč, le pri redkih gla‑
sovih tudi od drugje – npr. pri tlesku z jezikom. Glede na svojo velikost
je govorni organ zelo močan izvor zvoka, saj se lahko npr. operni pevec
dobro kosa s celotnim orkestrom. Glasovi so sestavljeni iz več frekvenc
in imajo večinoma zapleteno spektralno sestavo. Nihanje zvoka je namreč
lahko zares periodično le pri samoglasnikih, saj le samoglasniki nastanejo z
nihanjem glasilk ob povsem odprtem govornem traktu. Osnovno frekven‑
co samoglasnikov (višino njihovega tona) tako uravnavamo z napetostjo
glasilk, ostale značilne frekvence, po katerih se samoglasniki ločijo med
seboj, pa z oblikovanjem votlin govornega trakta. Žrelo, ustna in nosna
votlina namreč delujejo kot resonatorji, v katerih se glede na njihovo obli‑
ko in velikost nekatere frekvence ojačijo bolj kot druge. Pri soglasnikih se
oblika govornega trakta med govorom zelo spreminja (v določenem hipu
je trakt lahko tudi povsem zaprt, kot npr. pri zapornikih »p«, »b« ...) ali
pa ni nihanja glasilk (npr. pri »s«), zato je o periodičnosti teh zvokov in o
njihovi višini težko govoriti.
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Poglavje 23

Ultrazvočno slikanje

23.1 Osnovne značilnosti
Ultrazvočno slikanje, ki ga imenujemo tudi ehografija oz. sonografija, je ena
od najbolj razširjenih slikovnih diagnostičnih metod, saj je preiskava ne‑
invazivna in relativno poceni. Osnovni mehanizem nastanka ultrazvočne
slike je enostaven: v telo usmerimo kratke ultrazvočne sunke, nato pa na
osnovi njihovih odmevov, ki se odbijajo od različnih tkiv, rekonstruiramo
sliko telesa (slika 23.1). V tem poglavju bomo spoznali glavne značilnosti
te metode ter nekaj njenih prednosti in slabosti.

Za slikanje se največkrat uporablja ultrazvok s frekvencami od 1MHz
do približno 15MHz in jakostmi od 0,1 W/m2 do 700 W/m2. Za produkcijo
in detekcijo tako visokih frekvenc ne moremo uporabljati klasičnih zvoč‑
nikov in mikrofonov, saj le ti ne morejo nihati dovolj hitro. Kot izvori in
detektorji ultrazvoka se zato uporabljajo piezoelektrični kristali. To so kri‑
stali, ki se pod vplivom električne napetosti skrčijo in raztezajo. Če na
piezoelektrični kristal priključimo visokofrekvenčno izmenično napetost,
bo kristal zanihal z isto frekvenco in pri tem oddajal ultrazvok. Mehanizem
prenosa deluje tudi v obratno smer: ko mirujoč kristal pod vplivom ultraz‑
vočnih valov zaniha, se na njemu ustvari izmenična električna napetost, ki
ima enako obliko kot vpadni ultrazvočni val. Pri sodobnih ultrazvočnih
napravah je zato lahko ista sonda hkrati izvor in tudi detektor ultrazvoka.

Ultrazvočna naprava dobi informacijo o položaju struktur v telesu na
osnovi časovne zakasnitve zaznanih odbojev (slika 23.1B), saj velja, da v
času med oddanim in zaznanim sunkom le ta prepotuje dvojno razdaljo do
strukture (tja in nazaj). Globina, na kateri je struktura (d), je torej podana z
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Slika 23.1: Shematični prikaz nastanka slike pri ultrazvočnem slikanju. V telo
usmerimo kratke ultrazvočne sunke, nato pa na osnovi njihovih odbojev na struk‑
turah v telesu rekonstruiramo sliko notranjosti. (A) Shematični prikaz kratkega
ultrazvočnega sunka, ki ga odda sonda. Frekvenca prikazanega ultrazvoka je 1
MHz, nihajni čas je 1μs, sunek pa traja približno tri nihaje. (B) Ultrazvočna sonda,
ki je prislonjena na kožo, oddaja ultrazvočne sunke ter zaznava odboje, do katerih
pride na prehodih med tkivi v telesu. Merilo za globino tkiv je kar časovni zamik
odbojev. Da se zmanjša odboj ultrazvoka pri vstopu v telo, se med sondo in ko‑
žo nanese poseben gel. (C) Sonda oddaja sunke zaporedoma v različnih smereh.
(D) Računalnik na osnovi odbojev iz različnih smeri sestavi ultrazvočno sliko, pri
čemer je intenziteta na sliki sorazmerna višini odbitih sunkov.

enostavno enačbo:
d =

ct

2
. (23.1)

kjer je t zakasnitev med oddanim sunkom in prejetim odmevom, c pa hi‑
trost zvoka v telesu. Čeprav hitrost ultrazvoka ni enaka v vseh tkivih (spo‑
mnimo se podatkov iz tabele 22.1), pa ultrazvočna naprava ne more vede‑
ti, po katerih tkivih je potoval sunek, zato za izračun globine v enačbi 23.1
uporabi podatek o povprečni hitrosti zvoka v mehkih tkivih, c = 1540m/s.
Hitrosti v dejanskih tkivih se od te hitrosti sicer ne razlikujejo veliko, a za‑
radi te predpostavke včasih vseeno pride do popačenja slike.

Pri najbolj pogostem načinu slikanja sonda oddaja sunke zaporedoma
v različnih smereh (slika 23.1C), računalnik pa nato na osnovi odbojev se‑
stavi celotno sliko, pri čemer je intenziteta na sliki kar sorazmerna višini
zaznanih odbojev (slika 23.1D). Ta način prikaza slike se imenuje B‑način
(angl. brightness mode, B‑mode). Včasih se za prikaz slike uporablja tudi
starejši amplitudni ali A‑način (angl. amplitude mode oz. A‑mode), pri ka‑
terem naprava na grafu prikaže le zaznane odboje in njihove višine iz ene
smeri (slika 23.1B).
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23.2 Nastanek slike
Ključen pojav za nastanek ultrazvočne slike je odboj ultrazvoka na tkivih.
V prejšnjih poglavjih smo spoznali, da je jakost odbitega zvoka na meji med
dvema snovema odvisna od razlike njunih akustičnih impedanc (enačbi
22.9 in 22.10). Da si pridobimo občutek za odboj ultrazvoka, se spomni‑
mo vrednosti akustičnih impedanc različnih tkiv, ki so prikazane v tabeli
22.2. Iz tabele vidimo, da je odboj med mehkim tkivom in kostjo večji, kot
med dvema mehkima tkivoma, zato so kosti na ultrazvočnih slikah zelo
dobro vidne (slika 23.1D). Še mnogo večji je odboj med zrakom in mehkim
tkivom, zato bodo na ultrazvočnih slikah vedno zelo svetli robovi telesnih
votlin, ki so napolnjene s plini. Zrak bi nam delal težave tudi že pri vstopu
ultrazvoka v telo, zato moramo ultrazvočno sondo prisloniti tik na kožo,
vmes pa nanesti še poseben gel, katerega akustična impedanca je podobna
akustični impedanci kože (slika 23.1B).

Ultrazvok se ne odbija le na meji med tkivi, ampak tudi na vseh majh‑
nih nehomogenih strukturah v njih, zaradi česar se zdijo ultrazvočne sli‑
ke polne šumenja (»sneženja«). Radiologi stopnjo jakost odbojev v tkivu
opisujejo s pojmom ehogenost (slika 23.2A). Strukture, ki odbijajo več ul‑
trazvoka od okolice, so hiperehogene, če pa odbijajo manj, so hipoehogene.
Popolnoma anehogene so le povsem homogene strukture; takšne so npr.
poln mehur ali druge votline napolnjene s homogeno tekočino. Ehogenost
nekaterih struktur lahko izboljšamo z uporabo kontrastnih sredstev, ki jih
vbrizgamo preiskovancu v žilo (sliki 23.2B in C). S pomočjo našega zna‑
nja akustike lahko uganemo, da so dobra kontrastna sredstva za ultrazvok
raztopine z majhnimi mehurčki plina, saj se na prehodu med raztopino in
plinom ultrazvok zelo dobro odbija (slika 23.2D).

Razlog, da se za slikanje uporablja ultrazvok in ne zvok, je njegova vi‑
soka frekvenca ter posledično majhna valovna dolžina in s tem tudi manjši
uklon (tabela 23.1). V mehkem tkivu ima zvok s frekvenco 1 kHz valovno
dolžino 1,5m, ultrazvok s frekvenco 1MHz pa tisočkrat manj, tj. 1,5mm.
Manjša kot je valovna dolžina, manjši so uklonski pojavi in bolje je mo‑
goče ultrazvok usmeriti. Pri dani velikosti ultrazvočne sonde ima torej
ultrazvok visoke frekvence večjo globino bližnjega območja LF in manj‑
ši divergenčni kot α (slika 21.13C in tabela 23.1). Poleg tega do uklona
pride tudi na strukturah v telesu. Spomnimo se tudi, da zaradi uklona z
nobenim valovanjem ne moremo zaznati struktur, ki so manjše od valov‑
ne dolžine. Višja, kot je frekvence ultrazvoka, tem bolj natančna je torej
ultrazvočna slika (primer 23.1).
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Slika 23.2: Kontrast na ultrazvočni sliki je odvisen od jakosti odbojev na in v struk‑
turah v telesu, tj. od njihove ehogenosti. (A) Shematični prikaz struktur z različno
ehogenostjo. Anehogene so le votline, napolnjene s homogeno tekočino ali pli‑
nom. (B) Primer ultrazvočne slike, na kateri se vidi sum tumorja ob jetrih (ozna‑
čeno s puščico), a zanesljive diagnoze zaradi slabega kontrasta ni mogoče postaviti
[29]. (C) Slika istega predela po vbrizganju kontrastnega sredstva v žilo preisko‑
vanca. Ker je tumor bolj prekrvavljen od okolice, se mu ehogenost po dodatku
kontrastnega sredstva zelo poveča. (D) Kot kontrastno sredstvo za ultrazvok se
največkrat uporabljajo raztopine nekaj mikrometrov velikih mehurčkov plina, saj
se na njih ultrazvok močno odbija. Obstojnost mehurčkov se poveča s surfaktanti.

Čeprav je za večjo ločljivost slike dobro uporabiti čim višje frekvence,
pa kljub vsemu ne moremo uporabljati ultrazvoka poljubno visokih fre‑
kvenc. Glavni razlog za to je, da z večanjem frekvence narašča tudi absorp‑
cija v tkivu (tabela 23.1). Tako je razpolovna debelina za jakost ultrazvoka
v tkivu kar obratno sorazmerna frekvenci (absorpcijski koeficient je soraz‑
meren frekvenci):

x½ ∝
1

ν
oz. µ ∝ ν . (23.2)

Pri izbiri frekvence ultrazvoka v klinični praksi je tako potreben kompro‑
mis: visoke frekvence omogočijo lepšo sliko, a z njimi ne moremo slikati
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Tabela 23.1: Vpliv frekvence ultrazvoka na valovno dolžino λ v mehkem tkivu,
globino bližnjega območjaLF , divergenčni kotα ter razpolovno debelino za jakost
ultrazvoka pri absorpciji x½ [30]. Globina bližnjega območja in divergenčni kot sta
podana za primer uporabe ultrazvočne sonde s premerom 1 cm (za opis LF in α
glejte poglavje o uklonskih pojavih, enačbi 21.11 in 21.12). Višja kot je frekvenca,
manjša je valovna dolžina in manj izraziti so uklonski pojavi. Po drugi strani se z
večanjem frekvence veča absorpcija v tkivu.

ν λ [mm] LF [cm] α [°] x½ [cm]

1000 Hz 1540 0,002 90

1 MHz 1,5 1,6 11 6

5 MHz 0,3 8 2 1,2

10 MHz 0,15 16 1,1 0,6

tako globoko v telo kot z nizkimi. Zato se ponavadi pri slikanju podkožnih
struktur uporablja čim višje frekvence (> 10MHz), pri abdominalnem sli‑
kanju pa nižje (2 – 5 MHz).

Pozoren bralec se je morda vprašal, zakaj je v B‑načinu intenziteta struk‑
tur na sliki približno enaka ne glede na globino, na kateri se nahajajo. Priča‑
kovali bi namreč, da so odboji od globljih struktur šibkejši (in zato na sliki
temnejši), saj prepotujejo daljšo razdaljo in se zaradi absorpcije bolj ošibijo.
Odgovor na to vprašanje je enostaven – odmevi iz večje globine so v resnici
šibkejši, a to razliko ultrazvočna naprava kompenzira in jih na zaslonu pri‑
kaže svetlejše, kot so v resnici (slika 23.3). Pri kompenzaciji slike upošteva
povprečno absorpcijo v mehkem tkivu, zato lahko prisotnost struktur z bi‑
stveno spremenjenim absorpcijskim koeficientom povzroči artefakte, ki pa
nam lahko zelo pomagajo pri klinični analizi (slika 23.3C).
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Slika 23.3: Nastanek akustične pospešitve in akustične sence. (A) Primer nekom‑
penzirane slike, na kateri so globlje strukture so na sliki temnejše, saj odboji od
njih prepotujejo daljšo pot in se zaradi absorpcije bolj ošibijo [27]. (B) Ultrazvočne
naprave imajo ponavadi vključeno kompenzacijo slike, ki ojači odboje od globljih
struktur, tako da so vse strukture na sliki enako svetle. Ojačitev pri kompenzirani
sliki je izračunana glede na absorpcijo v povprečnem tkivu, zato lahko kompen‑
zacija privede do artefaktov. (C) Na sliki sta jetrni cisti (označeni z rdečo puščico),
v katerih je absorpcija ultrazvoka manjša kot v povprečnem tkivu [31]. Ultrazvok,
ki potuje skozi njiju, se zato absorbira manj kot v njuni okolici. Odboji iz struktur,
ki se nahajajo za cisto, so zato močnejši od povprečnih in ko jih naprava s kom‑
penzacijo slike še dodatno ojači, postanejo območja za cistama na sliki svetlejša od
okolice (označeno z modrimi puščicami). V slovenskem žargonu se ta pojav ime‑
nuje akustična pospešitev (angl. acoustic enhancement). (D) Akustični pospešitvi
nasproten pojav je akustična senca (angl. acoustic shadowing), do katerega pride
pri potovanju ultrazvoka skozi strukture, v katerih se ultrazvok absorbira bolj od
povprečja. Take strukture so npr. kosti in pa ledvični in sečni kamni. Vse kar se
nahaja za takimi strukturami, se na sliki pokaže temneje od okolice. Na prikazani
sliki je z rdečo puščico označen sečni kamen, njegova akustična senca pa je ozna‑
čena z modro puščico.
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Primer 23.1: ločljivost ultrazvočne slike

Z našim znanjem fizike lahko ocenimo ločljivost, ki jo je mogoče doseči pri ul‑
trazvočnem slikanju. Opisali bomo le tri glavne vrste ločljivosti, ki so shematično
prikazane na spodnji sliki: vzdolžno (A), prečno (B) in časovno ločljivost (C).

A B C

Δt

Vzdolžna ločljivost opisuje ločljivost v smeri žarka, tj. najmanjšo razdaljo med
dvema strukturama, pri kateri strukturi še lahko razločimo. Z malo razmisleka
ugotovimo, da je pogojena z dolžino ultrazvočnega sunka, saj dveh struktur v
vzdolžni smeri ne bomo razločili, če se bosta odmeva od njiju prekrivala. Tipični
sunki so dolgi nekaj valovnih dolžin (slika 23.1A), le te pa so pri 10MHz dolge pri‑
bližno 0,15mm (tabela 23.1). Tudi pri visokih frekvencah vzdolžna ločljivost torej
ne more biti bistveno boljša od 1mm, pri nižjih frekvencah pa je še slabša.
Prečna ločljivost opisuje ločljivost pravokotno na smer žarka in je odvisna od ši‑
rine ultrazvočnega snopa oz. sunka v lateralni smeri. Zaradi uklona je ta širina
lahko najmanj približno valovna dolžina in še to le v bližnjem območju, na večjih
oddaljenostih od sonde pa ultrazvočni žarek slej ko prej začne divergirati. Prečna
ločljivost bo tako na večjih globinah slabša kot tik pod kožo. Sodobne sonde znajo
ultrazvočni žarek fokusirati – v takem primeru je prečna ločljivost seveda najboljša
v fokusu žarka. V praksi je prečna ločljivost pogosto celo malo slabša od vzdolžne.
Časovna ločljivost opisuje čas, ki je potreben za eno sliko (∆t), oz. frekvenco osve‑
ževanja slike. V grobem je ∆t enak produktu časa, ki je potreben za detekcijo od‑
mevov enega sunka (t1), in števila sunkov, ki jih potrebujemo, da prečešemo žele‑
no preiskovano območje (N ). Koliko časa pa potrebujemo za detekcijo odmevov
sunka v eni smeri? To je ravno čas, ki ga sunek potrebuje za svojo pot od son‑
de do konca preiskovanega območja in nazaj. Če je preiskovano območje globoko
L = 20 cm in ga želimo preiskati v 200 različnih smereh (N = 200), je torej časovna
ločljivost slikanja enaka

∆t = Nt1 = N
2L

c
= 200

0,4m
1540m/s

= 200 · 0,26ms = 50ms .

Z drugimi besedami, frekvenca osveževanja slike je enaka 1/∆t = 20Hz. Ultraz‑
vočno slikanje ima torej dobro časovno ločljivost in lahko z njim npr. brez težav
opazujemo bitje srca.
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Kot marsikje v življenu, je torej tudi pri ultrazvočnem slikanju potrebno sklepati
kompromise med različnimi omejitvami. Za slikanje struktur, ki so globoko v te‑
lesu, moramo uporabiti nižje frekvence ultrazvoka, ki se v tkivu manj absorbirajo,
a zaradi tega izgubimo na ločljivosti slike. Plitkejše, kot je preiskovano področje,
višje so lahko ultrazvočne frekvence in boljši sta vzdolžna in prečna ločjivost. Pri
časovni ločljivosti je podobno – večje kot je preiskovano področje, več časa potre‑
bujemo za nastanek ene slike in slabša je časovna ločljivost.

23.3 Dopplersko ultrazvočno slikanje
Z ultrazvokom lahko poleg slike struktur v telesu ocenimo tudi njihovo
gibanje, pri čemer nam na pomoč priskoči Dopplerjev pojav. Do tega pojava
pride, če se izvor in sprejemnik valovanja gibljeta eden glede na drugega,
zaradi česar sprejemnik zazna drugačno frekvenco valovanja, kot jo oddaja
izvor.

Dopplerjev pojav bomo najbolje razumeli s pomočjo vizualizacije va‑
lovnih front. Slika 23.4A prikazuje primer, ko izvor valovanja miruje, spre‑
jemnik pa se mu približuje s hitrostjo vs. Izvor oddaja valovanje s frekvenco
ν, valovi se širijo enakomerno stran od izvora s hitrostjo c in valovno dol‑
žino λ. Ker se sprejemnik giblje proti smeri valovanja, zaznava navidezno
večjo hitrost valovanja c′ = c + vs, zaznana valovna dolžina valovanja pa
se ne spremeni. Frekvenca, ki jo zaznava sprejemnik, je tako

ν ′ =
c′

λ
=
c+ vs
λ

= ν
(
1 +

vs
c

)
, (23.3)

in je višja od oddane frekvence. V primeru, ko se sprejemnik oddaljuje od
izvora, je hitrost vs negativna in je frekvenca, ki jo zazna sprejemnik, nižja
od oddane.

Slika 23.4B prikazuje primer, ko sprejemnik miruje, izvor valovanja pa
se približuje s hitrostjo vs. V tem primeru sprejemnik zaznava nespreme‑
njeno hitrost valovanja in zmanjšano valovno dolžino λ′, zato bo zaznana
frekvenca višja od frekvence izvora. Zmanjšanje valovne dolžine je enako
razdalji, ki jo prepotuje izvor v eni periodi valovanja. Premik izvora valo‑
vanja v eni periodi je L = vit0 = vi

ν
= vi

c
λ, zato je frekvenca, ki jo zazna

sprejemnik, enaka:

ν ′ =
c

λ′
=

c

λ− L
=

c

λ− vi
c
λ
= ν

1

1− vi
c

, (23.4)
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O O
vS

vi

l'

l

A B

Slika 23.4: Shematičen prikaz Dopplerjevega pojava. (A) izvor valovanja miruje,
sprejemnik se premika s hitrostjo vs. (B) Sprejemnik miruje, izvor valovanja pa se
premika s hitrostjo vi.

Če se izvor približuje sprejemniku, je vrednost faktorja 1/(1 − vi/c) večja
od 1, zato je zaznana frekvenca ν ′ večja od oddane frekvence ν. V primeru,
ko pa se izvor oddaljuje od sprejemnika, ima vi negativno vrednost in je
zaznana frekvenca manjša od frekvence izvora.

Hitrosti gibanja so pogosto majhne v primerjavi s hitrostjo valovanja,
v
c
≪ 1. V takih primerih lahko uporabimo binomski razvoj, za katerega

pri majhnih vrednostih x velja: (1 ± x)m ≈ 1 ± mx. Enačba 23.4 se tako
poenostavi ν ′ = ν(1 + vi/c), kar je enako kot v primeru, ko se oddaljuje
sprejemnik in izvor miruje. Pri majhnih hitrostih torej ni razlike med giba‑
njem izvora in sprejemnika, zato lahko v splošnem spremembo frekvence
zaradi Dopplerjevega pojava zapišemo preprosto kot:

ν ′ = ν
(
1± v

c

)
oz.

∆ν

ν
= ±v

c
(23.5)

kjer je v relativna hitrost med izvorom in sprejemnikom in pozitivni pred‑
znak velja za približevanje, ∆ν pa je razlika med zaznano in oddano fre‑
kvenco. Zaznana frekvenca se torej poveča, če se izvor in sprejemnik pribli‑
žujeta in zmanjša, če se izvor in sprejemnik oddaljujeta. Če je medsebojna
hitrost izvora in sprejemnika enaka 1 % hitrosti zvoka, se bo tudi zaznana
frekvenca spremenila za 1 %.

Pri ultrazvočnem slikanju pride do Dopplerjevega pojava vsakič, ko se
ultrazvočni sunki odbijejo na strukturah, ki se gibljejo glede na sondo, npr.
na premikajočih se površinah organov ali na krvi, ki se pretaka po žilah. Pri
tem do pojava pride kar dvakrat, saj ima gibajoča struktura najprej vlogo
»sprejemnika«, ko pa sunek odbije nazaj pa še vlogo »oddajnika«. Poleg
tega moramo upoštevati, da k spremembi frekvence prispeva le kompo‑
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nenta hitrosti gibanja v smeri žarka (slika 23.5). Sprememba frekvence, ki
jo zazna ultrazvočna sonda je torej

∆ν

ν
= 2

v

c
cosα , (23.6)

kjer je α kot med smerjo gibanja površine organa ali krvi in ultrazvočnim
žarkom.

A B

a
v

Slika 23.5: Shematični prikaz Dopplerskega ultrazvočnega slikanja. (A) Do Do‑
pplerjevega pojava pride vsakič, ko se ultrazvočni sunek odbije na premikajočih
se strukturah, npr. na eritrocitih v krvnem obtoku. K dopplerski spremembi fre‑
kvence prispeva le komponenta hitrosti v smeri proti sondi (njena vrednost je
v cosα). (B) Primer dopplerske ultrazvočne slike popkovnične arterije [32]. Hi‑
trost struktur je na sliki prikazana z barvami, zato se dopplerskemu ultrazvoku
reče tudi barvni ultrazvok.

23.4 Biološki učinki ultrazvoka
Kot vsako valovanje tudi ultrazvok nosi energijo in lahko zato učinkuje na
snov, po kateri potuje. Med fizikalni vplivi ultrazvoka na tkiva sta naj‑
bolj izrazita dva. Prvi so t. i. termični učinki, pri katerih se tkivo zaradi
absorpcije ultrazvoka segreva, drugi pa je mehansko nihanje tkiva, ki lah‑
ko povzroči nastajanje zračnih mehurčkov (ta pojav imenujemo kavitacija).
Če je kavitacija zelo močna, lahko pokanje mehurčkov mehansko raztrga
in uniči bližnje celice.

Pri ultrazvočnem slikanju ponavadi uporabljamo tako majhne jakosti
ultrazvoka, da naj njegovi fizikalni vplivi ne bi imeli trajnih stranskih po‑
sledic na tkiva. Ker pa biološki vplivi ultrazvoka v celoti še niso povsem
raziskani, se včasih kljub vsemu odsvetuje uporabo ultrazvočnega slikanja
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po nepotrebnem. Po drugi strani fizikalne vplive ultrazvoka s pridom upo‑
rabljajo pri fizioterapiji, kjer naj bi pomagali pri lajšanju bolečin in celjenju
ran. Poleg tega se v zadnjem času intenzivno raziskuje uporaba t. i. ultraz‑
vočne kirurgije, pri kateri skalpel ni potreben, saj se npr. maligno tkivo
uniči z močno fokusiranim ultrazvočnim valovanjem zelo velike jakosti.
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Poglavje 24

Elektromagnetno valovanje

24.1 Osnovne lastnosti
Poznamo različne vrste elektromagnetnega valovanja, od radijskih valov
preko vidne svetlobe do rentgenskih žarkov in žarkov gama (tabela 24.1).
Frekvenčna območja različnih vrst elektromagnetnega valovanja so zelo
različna (razmerje med frekvenco pri žarkih gama in radijskih valovih je
več kot 1018), zato so zelo različne tudi njihove lastnosti, uporaba in ne‑
nazadnje tudi njihov vpliv na biološko tkivo. Območje radijskih valov si
ponavadi zapomnimo po njihovi frekvenci (do približno nekaj 100 MHz),
območja ostalih vrst pa po valovnih dolžinah. Rentgenske žarke in žarke
gama si pogosto zapomnimo tudi po visoki energiji fotonov (od nekaj 100
eV do nekaj 100 keV in več).

Med elektromagnetnimi valovanji nam je najbližja vidna svetloba, tj.
elektromagnetno valovanje z valovnimi dolžinami od približno 400 nm do
približno 750 nm. V mavrici vidne svetlobe si barve sledijo približno tako:
vijoličasta, modra, zelena, rumena, oranžna in rdeča, a meje med barva‑
mi niso ostre. Modro‑vijolična ima najkrajšo valovno dolžino, rdeča pa
najdaljšo. V mavrici ni bele barve, saj bela svetloba nima »svoje« valovne
dolžine, ampak je mešanica vseh mavričnih barv. Pri valovnih dolžinah
za rdečo (od od 750 nm do 1 mm) je infrardeča svetloba (IR), pri valovnih
dolžinah pred vijoličasto (od 400 nm do 100 nm) pa ultravijolična svetloba
(UV). Ultravijolično svetlobo včasih delimo še na UVA, UVB in UVC. UVA
ima najdaljše valovne dolžine (od 400 nm do 315 nm), UVC pa najkrajše (od
280 nm do 100 nm). S sonca skozi Zemljino atmosfero na površje prodreta
le UVA in UVB.
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Tabela 24.1: Pregled spektra elektromagnetnega valovanja. Prikazane so frekven‑
ca ν, valovna dolžina v zraku λ, energija enega fotonaWγ (več o fotonih v poglavju
24.2) ter tipični izvori. Meje med različnimi tipi elektromagnetnega valovanja niso
ostre.

ν λ Wγ tipični izvor

nizke frekvence 50 Hz 1000 km 2× 10−13 eV elekt. omrežje

FM radio ∼ 100 MHz ∼ 3 m ∼ 0,1 μeV antena

GSM mobitel ∼ 1 GHz ∼ 30 cm ∼ 1 μeV antena

mikro valovi ∼ 10 GHz ∼ 3 cm ∼ 10 μeV antena

IR ∼ 30 THz 750 nm – 100 μm < 1,5 eV telesa s sobno T

vidna svetloba ∼ 600 THz 400 nm – 750 nm 1,5 eV – 3 eV molekule, atomi

UV ∼ 1015 Hz 10 nm – 400 nm 3 eV – 120 eV molekule, atomi

rentgen ∼ 1018 Hz 10 pm – 10 nm 120 eV – 120 keV rentgenska cev

žarki γ > 1019 Hz < 10 pm > 100 keV jedrski razpad

Pri elektromagnetnem valovanju nihata jakost električnega polja (E⃗) in
gostota magnetnega polja (B⃗) pravokotno ena na drugo (slika 24.1). V splo‑
šnem so izvori elektromagnetnega valovanja električni naboji, ki se pospe‑
šeno gibljejo oz. nihajo. Na primer, v radijskih antenah niha električni tok,
zato se spreminja električno polje v okolici. Ker je s spreminjanjem elektri‑
čnega polja na enem mestu vedno povezano tudi spreminjanje magnetnega
polja v okolici in obratno, se elektromagnetno valovanje širi stran od an‑
tene. Smeri jakosti električnega polja in gostote magnetnega polja sta pra‑
vokotni na smer širjenja, zato je elektromagnetno valovanje transverzalno.
Če sta smeri električnega in magnetnega polja stalni, je elektromagnetno
valovanje polarizirano.

Za razliko od zvoka, se elektromagnetno valovanje lahko širi po pra‑
znem prostoru (vakuumu). Hitrost širjenja elektromagnetnega valovanja
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Slika 24.1: Shematični prikaz elektromagnetnega valovanja. Izvor valovanja je
električni naboj, ki niha in s tem neprestano spreminja električno polje v okoli‑
ci. Spreminjajoče električno polje povzroči nastanek spreminjajočega magnetne‑
ga polja, to pa spet povzroči spreminjajoče električno polje in nihanje polja se tako
širi po prostoru. Ker lahko električno in magnetno polje nastaneta tudi v praznem
prostoru, se lahko po praznem prostoru širi tudi elektromagnetno valovanje. Ja‑
kost električnega polja E⃗ in gostota magnetnega polja B⃗ nihata pravokotno ena
na drugo ter pravokotno glede na smer širjenja valovanja, zato je elektromagne‑
tno valovanje transverzalno valovanje in je lahko polarizirano.

v praznem prostoru je nam dobro znana konstanta:

c0 = 299792458 m/s ≈ 3 · 108 m/s . (24.1)

V snovi je hitrost elektromagnetnega valovanja c vedno manjša od hitrosti
v praznem prostoru, c < c0

c =
c0
n
, (24.2)

pri čemer smo vpeljali lomni količniklomni količnik snovi n, ki je razmerje
hitrosti v vakuumu in hitrosti v snovi, n = c0/c. Lomni količnik je vedno
večji od 1. Za vidno svetlobo je lomni količnik v zraku približno 1,0003, v
vodi 1,33, v steklu pa približno 1,51.

Primer 24.1: Robotske operacije in odzivni čas

Hitrost svetlobe je najvišja hitrost v naravi, zato informacije po svetu ne morejo
potovati hitreje. Za komunikacijo na velike razdalje zato pogosto uporabljamo op‑
tične kable, po katerih lahko s svetlobnimi signali hitro in zanesljivo pretakamo

1Fiziki znajo povedati, da je hitrost elektromagnetnega valovanja v praznem prostoru
povezana z influenčno konstanto ϵ0 in indukcijsko konstanto µ0, ki smo ju spoznali pri
električnih in magnetnih pojavih, c0 = 1/

√
ϵ0µ0, v snovi pa velja n =

√
ϵµ

307



Medicinska biofizika (oktober 2023)

velike količine podatkov. Čeprav je hitrost svetlobe zelo velika, pa ni neskončna
in nam lahko v določenih situacijah vseeno predstavlja omejitev. Tak primer so
robotske operacije na daljavo, pri katerih časovni zamik med operaterjevim priti‑
skom na gumb in premikom oddaljenega robota ne sme biti predolg. Izračunajmo
največjo razdaljo med kirurško dvorano in oddaljenim operaterjem, če je za neko
operacijo zahtevan odzivni čas 50 ms.
Najprej izračunajmo hitrost potovanja signalov po optičnem kablu. Lomni količ‑
nik v optičnih kablih je približno 1,5, zato je hitrost svetlobe po optiki približno

c =
c0
1,5

=
3 · 108 m/s

1,5
= 2 · 108 m/s .

V času 50 ms signal po optiki torej prepotuje

s = c · t = 2 · 108 m/s · 5 · 10−2 s = 1 · 107 m = 10000 km .

Če bi signal potoval po zraku (npr. po omrežju 5G), bi bil sicer za 50 % hitrejši,
a še vedno ne dovolj hiter, da bi lahko to operacijo zanesljivo opravljali iz enega
kontinenta na drugega. Še toliko težja bo izvedba oddaljenih operacij z Zemlje na
kolonijo na Marsu ...

Lomni količnik v določeni snovi ponavadi ni enak za vse valovne dolži‑
ne elektromagnetnega valovanja. Ta pojav imenujemo disperzija. V steklu
je na primer lomni količnik za vidno svetlobo največji za modro in naj‑
manjši za rdečo. V steklu se tako različne barve lomijo pod različnimi koti
in zato se bela svetloba na stekleni prizmi razlomi v mavrico (pri tem se
najbolj lomi modra svetloba). Disperzija je prisotna tudi v lečah (tako v
očesnih kot tudi pri mikroskopu) zato lomnost leč ni nujno enaka za vse
barve (pri lečah ta pojav imenujemo kromatična aberacija).

24.2 Kvantna slika
Čeprav lahko elektromagnetno valovanje razumemo kot zvezen proces,
pa lahko izmenjava energije med elektromagnetnim valovanjem in snovjo
poteka le v obliki končno velikih »paketov energije« (kvantov) – fotonov.
Fotoni elektromagnetnega valovanja s frekvenco ν imajo energijo

Wγ = hν =
hc

λ
, (24.3)
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kjer je Planckova konstanta h = 6,6 · 10−34 Js (ker fotone pogosto označu‑
jemo s simbolom γ, smo energijo fotona zapisali z Wγ). Elektromagnetno
valovanje je torej po eni strani zvezen proces (valovanje), po drugi pa si
lahko predstavljamo, da ga sestavljajo delci fotoni, ki so energijski delci
brez mase in se gibljejo s svetlobno hitrostjo.

Iz zgornje enačbe vidimo, da imajo fotoni tem večjo energijo, čim ve‑
čja je frekvenca oz. manjša je valovna dolžina elektromagnetnega valova‑
nja. Pri določanju energije fotonov nam pogosto pride prav drugi zapis v
zgornji enačbi, iz katerega lahko izračunamo energijo fotona valovanja z
valovno dolžino λ. Če si zapomnimo vrednost produkta hc = 1240 eVnm,
lahko npr. hitro izračunamo energijo fotona valovanja z λ = 10 nm: W =
1240 eVnm

10 nm = 124 eV. Tipične energije fotonov so predstavljene v tabeli 24.1.
Prehodi med različnimi energijskimi stanji v atomih in molekulah so

kvantizirani, se pravi da so energijske razlike med različnimi stanji natan‑
ko določene. Ob prehodu iz višjega v nižje energijsko stanje tako molekula
odda foton z energijo, ki je natanko enaka energijski razliki med stanjema
(slika 24.2). Velja tudi obratno – prehod v višje energijsko stanje in absorp‑
cija fotona sta mogoča le, če ima foton natanko ustrezno energijo.

V splošnem je energija molekule lahko spravljena v njeni rotaciji, nje‑
nem nihanju in pa v različnih stanjih elektronov v orbitalah (primer 24.2),
pri čemer je za prehode med rotacijskimi stanji potrebno najmanj energije,
za prehode med elektronskimi pa največ (slika 24.3A‑C). Prehodi med ro‑
tacijskimi stanji so tako povezani z absorpcijo oz. oddajanjem mikrovalov,
prehodi med vibracijskim stanji z infrardečo svetlobo, elektronski prehodi
v zunanjih atomskih lupinah pa z vidno svetlobo.

Slika 24.2: Shematični prikaz
prehoda atoma iz višjega v niž‑
je vzbujeno stanje. Atom pri pre‑
hodu v nižje energijsko stanje iz‑
seva foton z energijo, ki je ena‑
ka razliki energij obeh stanj. Po‑
dobno velja tudi obratno: atom
se lahko v višje vzbujeno stanje
vzbudi z absorpcijo fotona ustre‑
zne energije.

ΔW	=	W 	=	h	νγW
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Primer 24.2: elektronski kvantni skoki v atomu
V kvantnem svetu mikroskopskih delcev veljajo pravila, ki jih v našem običajnem
makroskopskem svetu ne opazimo. Molekule npr. ne morejo imeti kakršne koli
energije, ampak so njihova energijska stanja kvantizirana – energija lahko zavza‑
me le točno določene vrednosti. V splošnem so molekulske energije odvisne od
interakcij, ki jih čutijo elektroni. Ker je v molekulah je tipično veliko elektronov, ki
interagirajo med seboj in s protoni v jedrih, je njihova energijska stanja težko izra‑
čunati (te račune prepustimo kvantnim mehanikom). Kot primer bomo navedli le
energijo atomov z enim elektronom (tak je seveda vodik, pa tudi enkrat ioniziran
helij, dvakrat ioniziran litij itn.):

Wn = −13,6 eV
Z2

n2
, (24.4)

kjer je Z število protonov v jedru (za vodik je Z = 1 ...), n pa t. i. glavno kvantno
število, ki opisuje, v kateri lupini se nahaja elektron. Vrednost n = 1 velja za stanje
z najmanjšo možno energijo oz. lupino, ki je najbližje jedru.
Molekula pri prehodih med različnimi stanji razliko energije sprejme ali odda v
obliki fotona. Po definiciji ima vsaka vrsta molekule drugačno elektronsko sestavo
in s tem drugačne energijske nivoje in energijske razlike med nivoji. Vsaka vrsta
molekul ima zato svoj značilen »prstni odtis« možnih energij fotonov, ki jih lahko
absorbira oz. oddaja, s tem pa tudi svoj značilen absorpcijski oz. emisijski spekter.
Ko npr. elektron v vodiku preide iz tretje v drugo lupino, pri tem odda foton z
energijo:

Wγ = W3 −W2 = −13,6 eV(
1

32
− 1

22
) = 1,89 eV . (24.5)

S pomočjo enačbe 24.3 lahko izračunamo še ustrezno valovno dolžino svetlobe:

λ =
1240 eVnm
1,89 eV

= 656nm . (24.6)

Vodikov atom pri prehodu iz tretje v drugo lupino torej izseva foton rdeče barve s
točno določeno valovno dolžino. Spodnja slika prikazuje še ostale značilne barve
vodika in nekaterih drugih snovi [33].
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Absorpcijske in emisijske prstne odtise različnih snovi s pridom uporabljajo astro‑
nomi pri določanju sestave oddaljenih planetov in zvezd, v biomedicini pa to iz‑
rabljajo različne spektroskopske metode, s katerimi določamo sestavo bioloških
vzorcev. Pri tem nam pride prav, da imajo poleg elektronskih prehodov svoj pr‑
stni odtis tudi vibracijski in rotacijski prehodi v molekulah, slika 24.3A‑C, kakršne
smo srečali že pri Ramanovi spektroskopiji na sliki 5.6.

Interakcija elektromagnetnega valovanja s snovjo v živih sistemih ima
lahko zelo negativne posledice: če v molekulo prileti foton z dovolj veliko
energijo, jo lahko ionizira, tj. molekuli odtrga elektron in jo spremeni v po‑
zitiven ion (slika 24.3D). Ionizirane molekule (pravimo jim tudi molekule
s prostimi radikali) so kemijsko zelo reaktivne in lahko v celici povzroči‑
jo veliko škode, kar je lahko še posebej usodno, če se poškoduje molekula
DNK in pride do mutacije, ki povzroči rakavo obolenje. Tipične ionizacij‑
ske energije atomov in molekul so reda velikosti nekaj eV, zato imajo za
njihovo ionizacijo dovolj energije le del ultravijolične svetlobe, rentgenski
žarki in žarki gama (tabela 24.1). Tem valovanjem tako pravimo tudi ioni‑
zirajoča sevanja. Po drugi strani so radijski valovi in mikrovalovi (torej tudi
sevanje mobilnih telefonov) neionizirajoče sevanje, saj je energija fotonov
pri teh valovanjih veliko premajhna za ionizacijo.

Vračanje (relaksacija) molekul iz vzbujenih stanj v stanja z nižjo ener‑
gijo lahko poteka tudi brez oddajanja fotonov. Razlika energije med stanji
se v tem primeru pretvori na primer v vibracijsko energijo molekule, ki
smo jo srečali že v razdelku 5.3, ko smo opisovali lastna nihanja molekul
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Slika 24.3: Shematični prikaz štirih posledic absorpcije fotona v snovi. (A) Naj‑
manj energije je potrebno za povečanje hitrosti vrtenja molekul – to lahko povzro‑
čijo že mikrovalovi z energijo fotonov nekaj 10μeV, npr. sevanje mobitelov (B)
Nekaj več energije je potrebno za vzbujanje nihanja molekul ‑ to lahko povzročajo
fotoni infrardeče svetlobe, ki imajo energijo od nekaj 10meV do 1 eV. (C) Fotoni
vidne svetlobe povzročajo elektronske prehode zunanjih elektronov v molekulah.
(D) Če v molekulo prileti foton z energijo večjo od nekaj eV, ji lahko izbije elektron
iz zunanje lupine in jo s tem ionizira, tj. spremeni v ion. Elektromagnetna sevanja,
ki imajo toliko energije, se imenujejo ionizirajoča sevanja in lahko z ionizacijami
usodno poškodujejo biološko tkivo.

in z njimi povezane spektroskopske metode. Pogosto srečamo situacijo,
ko se molekula v višje elektronsko stanje vzbudi z absorpcijo fotona, se
nato delno relaksira preko različnih vmesnih stanj ter na koncu z oddajo
fotona spet konča v osnovnem stanju (slika 24.4). Oddan foton bo imel v
takem primeru še vedno natanko določeno energijo, ki pa bo nekaj nižja
od energije absorbiranega fotona (emisijska valovna dolžina bo torej malo
večja od absorpcijske). Če proces relaksacije poteče hitro (v času nekaj 10
ns), ga imenujemo fluorescenca, če pa relaksacija poteka počasi (v času od
nekaj ms do nekaj ur) govorimo o fosforescenci. Proces fluorescence nam
pride prav pri vizualizaciji celičnih gradnikov, pri t. i. imunooznačevanju,
kot ta postopek imenujejo celični biologi. Če na primer na določen protein
kemijsko vežemo fluorescenčno molekulo (»označevalec«), ter nato celico
osvetlimo z ustrezno eksitacijsko svetlobo, bodo označeni proteini nazaj
svetili z ustrezno emisijsko svetlobo, kar nam bo omogočilo, da jih zazna‑
mo.
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Slika 24.4: Shematični prikaz pojava
fluorescence. Z absorpcijo fotona se mo‑
lekula vzbudi v višje stanje, nato del
energije izgubi s prehodi preko različnih
vmesnih stanj, na koncu pa se v osnovno
stanje vrne spet z izsevanjem fotona. Iz‑
sevan foton ima manjšo energijo kot ab‑
sorbiran. Valovna dolžina izsevane sve‑
tlobe je zato večja od valovne dolžine ab‑
sorbirane svetlobe.

vzbujanje izsevanje

24.3 Termično sevanje
Ko se atomi v snovi zaradi svojega termičnega gibanja zadevajo med se‑
boj, se vzbujajo v vzbujena energijska stanja in nato med vračanjem v nižja
energijska stanja del energije oddajo tudi v obliki elektromagnetnega se‑
vanja. Površine toplih teles tako oddajajo elektromagnetno sevanje, ki ga
imenujemo termično sevanje. Občutimo ga na primer kot »toploto«, ki jo z
roko čutimo tik nad vročo kuhinjsko ploščo ali ko se grejemo ob tabornem
ognju.

Spekter termičnega sevanja je zvezen in ima obliko hriba, položaj vrha
spektra pa je odvisen od temperature telesa (slika 24.5). Višja kot je tem‑
peratura telesa, pri krajših valovnih dolžinah je vrh. Pri normalnih tempe‑
raturah okolja je večina energije termičnega sevanja zbrana v infrardečem
spektru. Celotno gostoto energijskega toka termičnega sevanja, ki jo odda‑
ja površina s temperaturo T , pove Stefanov zakon:

j = σT 4 , (24.7)

kjer je σ Stefanova konstanta, σ = 5,7 · 10−8 W m−2 K−4. Človeško telo
je ponavadi toplejše od okolice, zato oddaja več sevanja kot ga od okolice
sprejema – če je temperatura okolice 20 ◦C, človeško telo zaradi termičnega
sevanja izgublja približno 100 J energije na sekundo. Ponesrečence zato
pred podhladitvijo zaščitijo tudi z aluminijasto folijo, ki je sicer tanka, a ne
prepušča infrardečega sevanja.
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Slika 24.5: Spekter termičnega seva‑
nja, ki ga seva površina telesa pri raz‑
ličnih temperaturah. Ta spekter ime‑
nujemo tudi spekter črnega telesa, saj
strogo vzeto natančno velja le za tele‑
sa, ki ne odbijajo nobenega vpadne‑
ga sevanja, tj. za »črna telesa«. Osta‑
la telesa sevajo le približno tak spek‑
ter.
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24.4 Laser
Laser je izvor svetlobe z zelo uporabnimi lastnostmi. Izvor svetlobe pri
laserju je snov v optičnem resonatorju, ki jo vzbujamo v točno določeno
vzbujeno stanje in ki pri prehodu v osnovno stanje tako oddaja fotone sve‑
tlobe točno določene energije, tj. svetlobo s točno določeno valovno dol‑
žino. Pri tem prihaja do stimulirane emisije – že oddani fotoni v snovi
spodbujajo nove emisije. Laserska svetloba ima zato lahko veliko jakost
in je koherentna. Poleg tega laser svetlobo oddaja v ozkem snopu vzpo‑
rednih žarkov. Laser se po tem bistveno razlikuje od žarnic, ki svetlobo
vedno oddajajo na vse strani, v njihovi svetlobi pa so vse valovne dolži‑
ne (klasične žarnice več kot 90 % energije oddajajo v infrardečem spektru,
kar zaznamo kot toploto). Gostota svetlobnega toka v laserskem žarku je
lahko tako bistveno večja kot pri klasičnih svetilih.

Slika 24.6: Laser je izvor eno‑
barvne svetlobe, ki oddaja tanek
žarek z majhno divergenco. V
medicini se največ uporablja ter‑
mične učinke laserske svetlobe –
lasersko svetlobo z izbrano va‑
lovno dolžino usmerimo natanč‑
no v želeno tkivo, kjer se svetlo‑
ba absorbira, tkivo segreje in ga
tako izpari oz. preoblikuje.

tanek enobarvni
žarek z majhno

divergenco

stimulirana
emisija iz enega

energijskega prehoda

termični
učinki 

na tkivo
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Valovna dolžina laserske svetlobe je odvisna od izbire snovi, ki je v la‑
serju. V medicini je tako v zadnjem času na tržišču velika izbira različnih
laserjev z različnimi valovnimi dolžinami. Med tipične primere sodijo la‑
serji na osnovi argona (λ = 488 nm), Nd:YAG (neodimij:itrij‑aluminijev
kristal, λ = 1064 nm), ogljikovega dioksida (λ = 10,6μm), UV svetlobo
pa oddajajo različni t. i. excimer laserji (excimer = excited dimer, vzbujen
dimer žlahtnega in reaktivnega plina, npr. ksenonov fluorid).

Energija fotonov vidne svetlobe je premajhna, da bi svetloba lahko pov‑
zročila ionizacijo snovi. Laserska svetloba tako na tkivo deluje preko svojih
termičnih učinkov – absorpcija svetlobe v tkivu povzroči segrevanje tkiva.
Če je to segrevanje dovolj veliko, lahko tkivo celo izpari, kar lahko upo‑
rabljamo za preoblikovanje tkiva. Tako na primer laser uporabljamo za
odstranjevanje različnih kožnih struktur ali pa za preoblikovanje roženice
na očesni leči, s čimer lahko zmanjšamo kratkovidnost. Valovno dolžino
laserja izberemo glede na tkivo, ki ga želimo preoblikovati – za preobliko‑
vanje roženice npr. uporabimo UV laser, ki se v roženici dobro absorbira.

24.5 Svetlobna spektroskopija
Absorpcijski koeficient (µ, enačba 21.6) snovi v splošnem ni enak pri vseh
valovnih dolžinah. V raztopinah je poleg tega absorpcijski koeficient odvi‑
sen od koncentracije snovi v raztopini, pri čemer je pri majhnih koncentra‑
cijah ta odvisnost kar sorazmerna (spomnimo se primera 1.6). To s pridom
izkoriščajo različne spektroskopske metode, pri katerih na osnovi absorpcij‑
skih lastnosti raztopin določajo vsebnost različnih snovi v njih.

Osnovni spektroskopski inštrument je spektrofotometer (slika 24.7A), pri
katerem belo svetlobo najprej razklonimo v mavrico, nato pa s pomočjo de‑
tektorja izmerimo gostoto energijskega toka, ki prihaja skozi raztopino pri
različnih valovnih dolžinah. Ko te meritve primerjamo s spektrom svetlo‑
be, ki ga izmerimo brez raztopine, dobimo absorpcijski spekter raztopine,
ki nam pove, kako se absorpcijski koeficient raztopine oz. njena absorban‑
ca spreminja v odvisnosti valovne dolžine svetlobe.

Pri spektrofotometrih ponavadi za razklon svetlobe uporabimo uklon‑
sko mrežico (in ne npr. steklene prizme). Uklonska mrežica je mrežica z
vzporednimi režami, ki so me seboj oddaljene približno za valovno dolži‑
no vidne svetlobe (slika 24.7B). Če na uklonsko mrežico padajo vzporedni
žarki, vsaka od rež deluje kot točkast izvor z enako fazo. Valovanja iz so‑
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sednjih rež med seboj interferirajo in se ojačijo le v določenih smereh, ki so
odvisne od valovne dolžine (glejte poglavje o interferenci, enačba 21.9). Če
na uklonsko mrežico pade bela svetloba, se tako na drugi strani razkloni v
mavrico.

izvor
bele

svetlobe

uklonska
mrežica

raztopina

detektor

a

a

D

BA

Slika 24.7: (A) Shematični prikaz spektrofotometra. (B) Povečan prikaz uklonske
mrežice. Razdalja med režami uklonske mrežice D je tipično 1000 nm. Če na
uklonsko mrežico padajo vzporedni žarki, vsaka od rež deluje kot točkast izvor
z enako fazo. Valovanja iz sosednjih rež med seboj interferirajo in se ojačijo le v
določenih smereh, ki so odvisne od valovne dolžine. Bela svetloba se na uklonski
mrežici zato razkloni v mavrico.

Pri bioloških makromolekulah je spektralna odvisnost absorpcijskega
koeficienta povezana s stanjem molekule (s konformacijo molekule, z veza‑
vo ligandov ...). Na primer: v hemoglobinu, na katerega je vezan kisik, se
absorbira manj rdeče barve kot v hemoglobinu brez kisika (slika 24.8 levo).
S kisikom nasičena kri ima zato živo rdečo barvo. To lastnost uporabimo
pri kliničnem inštrumentu imenovanem pulzni oksimeter (slika 24.8 desno),
pri katerem na osnovi primerjave absorpcije svetlobe z valovnima dolži‑
nama 660 nm in 910 nm izmerijo oksigenacijo krvi (tj. delež hemoglobina
z vezanim kisikom).
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Slika 24.8: A) Absorpcijski spekter oksihemoglobina (črtkana črta) in deoksihe‑
moglobina (pikčasto). V hemoglobinu s kisikom se slabše absorbira rdeča barva,
zato je s kisikom nasičena kri živo rdeče barve. B) Shematični prikaz delovanja
pulznega oksimetra. S pulznim oksimetrom na osnovi meritve absorpcije svetlo‑
be v tkivu določimo nasičenost krvi s kisikom. Pogosto ga kot nekakšno ščipalko
pripnemo na pacientov prst. Najpreprostejši pulzni oksimetri merijo absorpcijo
le pri dveh valovnih dolžinah, pri 660 nm in 910 nm, kjer se absorpciji oksihemo‑
globina in deoksihemoglobina najbolj razlikujeta.
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Poglavje 25

Optika

Optični inštrumenti nam pomagajo videti stvari, ki jih s prostim očesom
ne razločimo, zato ni presenetljivo, da je optika z znanostjo tesno poveza‑
na že vse od časov, ko je Galileo Galilei skozi teleskop pogledal na Luno,
ali ko je Antony van Leeuwenhoek skozi svoj preprost mikroskop prvič
opazil bakterije in krvne celice. Čeprav je zgodovinsko optika najbolj po‑
vezana s svetlobo, pa danes vemo, da optične zakonitosti veljajo tudi pri
drugih valovanjih, zato nas izrazi kot so »ultrazvočna leča« ali »magnetna
leča v elektronskem mikroskopu« ne bodo presenetili. V tem poglavju si
bomo ogledali le najbolj osnovne elemente svetlobne optike, ki nam bodo
pomagali razmeti delovanje leč, mikroskopa in očesa.

25.1 Leče
Leče so osnovni optični element večine optičnih naprav. Izdelane so iz
prozornih materialov, ki imajo drugačen lomni količnik od okolice, npr. iz
stekla ali iz prozorne plastike, zato se svetlobni žarki na njih lomijo. Njiho‑
va osnovna lastnost je, da imajo ukrivljeno površino, zato snop vzporednih
žarkov svetlobe zberejo ali razpršijo. Zbiralne leče so ponavadi konveksne
oblike, razpršilne leče pa so konkavne1 (slika 25.1). Površine leč imajo po‑
navadi krogelno obliko, njihovo simetrijsko os pa imenujemo optična os. V
nadaljevanju se bomo omejili na opis tankih leč, katerih debelina je veliko
manjša od krogelnih radijev površin. Poleg tega bo opis strogo vzeto ve‑

1Da bi si lažje zapomni ta izraza, smo se na srednji šoli učili, da v konkavno lečo lahko
nalijemo kavo, v konveksno pa ne.
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ljal le za žarke, ki so blizu optične osi in na lečo ne padajo pod prevelikim
kotom (t. i. paraksialni približek).

Zbiralna leča snop vzporednih žarkov zbere v eni točki, ki leži v go‑
riščni ravnini leče (slika 25.1). Presečišče optične osi in goriščne ravnine se
imenuje gorišče, v njem se zberejo žarki, ki so vzporedni optični osi. Gori‑
šče označimo z F , razdaljo od gorišča do leče pa z f . Razpršilna leča snop
vzporednih žarkov lomi tako, kot da bi izhajali iz točke v goriščni ravnini
pred lečo. Po dogovoru ima zbiralna leča pozitivno, razpršilna pa nega‑
tivno goriščno razdaljo. Če je na obeh straneh leče snov z enakim lomnim
količnikom, sta tudi goriščni razdalji na obeh straneh enaki in leča deluje
enako v obeh smereh2.

Obratno vrednost goriščne razdalje leče (1/f ) imenujemo lomnost leče.
Lomnost je torej osnovna lastnost leče, ki pove kako »močno« leča zbira
žarke, zbiralne leče imajo pozitivno lomnost, razpršilne pa negativno. Lo‑
mnost leče je sorazmerna razliki lomnih količnikov v leči in okolici ter ukri‑
vljenosti obeh površin leče. Enota za lomnost je dioptrija, označimo pa jo z
D; velja 1 D = 1m−1.

Slika 25.1: Zbiralna leča (levo) snop vzporednih žarkov zbere v goriščni ravnini,
razpršilna (desno) pa žarke razprši, kot da bi prihajali iz ene točke goriščne rav‑
nine pred njo. Žarek, ki gre skozi središče leče, se na leči sploh ne lomi. Goriščna
ravnina je pravokotna na optično os, njena oddaljenost od leče pa je enaka gorišč‑
ni razdalji leče. Goriščna razdalja leče je označena z f , gorišči leče pa z F .

Leča predmet preslika v njegovo sliko. Lego nastanka slike in njeno
velikost lahko določimo geometrijsko s pomočjo treh t. i. značilnih žarkov,
ki izhajajo iz ene točke predmeta (slika 25.2). Pri zbiralni leči velja:

1. žarek, ki je pred lečo vzporeden optični osi, gre na drugi strani skozi
gorišče leče

2Poznamo tudi konkavno‑konveksne leče, ki so na eni strani konkavne, na drugi pa
konveksne. Tudi take leče so po delovanju simetrične – če je konkavna površina bolj ukri‑
vljena od konveksne, deluje taka leča z obeh strani zbiralno ter in obratno.
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2. žarku, ki gre skozi središče leče, se na leči smer ne spremeni

3. žarek, ki gre pred lečo skozi gorišče, je po prehodu skozi lečo vzpo‑
reden optični osi.

Če je predmet pred goriščem zbiralne leče, se žarki iz ene točke predme‑
ta na drugi strani leče spet sekajo in zato tam nastane realna slika predmeta,
ki pa je obrnjena (slika 25.2A). Realno sliko lahko opazujemo na zaslonu,
ki ga postavimo na mesto nastanka slike, lahko pa jo s pomočjo drugih leč
preslikamo še naprej, podobno kot bi preslikali realen predmet.

Slika 25.2: Prikaz treh značilnih žarkov, ki izhajajo iz ene točke predmeta, v različ‑
nih primerih. Realna slika predmeta je označena sivo, navidezna pa belo. Realno
sliko lahko npr. vidimo na zaslonu, ki ga postavimo na mesto slike, navidezno pa
vidimo, če z očesom pogledamo skozi lečo. A) Zbiralna leča, ko je predmet pred
goriščem. Slika predmeta je realna. B) Zbiralna leča, predmet je v gorišču. Na
drugi strani leče so žarki vzporedni in pravimo, da slika nastane v neskončnosti.
C) Zbiralna leča, predmet je med goriščem in lečo. V tem primeru realna slika ne
nastane, če pa pogledamo skozi lečo vidimo navidezno slika predmeta, pri čemer
imamo občutek, da je predmet bolj daleč, kot je v resnici. D) Razpršilna leča. Pri
njej je slika vedno navidezna. Če pogledamo na predmet skozi razpršilno lečo, se
nam zdi, da je bližje, kot je v resnici.

Če je predmet v gorišču zbiralne leče, so žarki iz ene točke predmeta
na drugi strani vzporedni in pravimo, da leča predmet preslika v neskonč‑
nost (slika 25.2B). Žarki z zelo oddaljenih predmetov se nam namreč zdijo
praktično vzporedni. V takem primeru predmeta ne moremo projicirati na
zaslon, lahko pa ga vidimo z očesom, saj očesna leča vzporedne žarke spet
zbere v sliko na mrežnici.

Če pa je predmet med goriščem in zbiralno lečo (slika 25.2C), so žarki
iz ene točke predmeta na drugi strani leče razpršeni, kot da bi prihajali iz
ene točke pred lečo. V tem primeru realna slika predmeta ne nastane, a pri
pogledu skozi lečo proti predmetu vidimo navidezno sliko predmeta – če v
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tem primeru gledamo skozi zbiralno lečo na predmet, nam leča predmet
navidezno prestavi na večjo oddaljenost.

Pri razpršilni leči vedno nastane navidezna slika, ne glede na postavi‑
tev predmeta glede na lečo (slika25.2D). Tudi pri konstrukciji slike razpr‑
šilne leče si pomagamo s tremi značilnimi žarki, le da sta tu vlogi gorišč
zamenjani. Če pogledamo skozi razpršilno lečo, nam oddaljene predmete
navidezno približa.

Lego in velikost slike predmeta lahko tudi izračunamo. Na skici poti
žarkov skozi lečo lahko opazimo dva para med seboj podobnih trikotni‑
kov (slika 25.2A). Prvi par sta trikotnika med žarkom 2 in optično osjo, ki
imata vrh v središču leče, drugi pa trikotnika med desnim delom žarka 1
in optično osjo z vrhom v desnem gorišču. Če oddaljenost predmeta od
leče označimo z a, oddaljenost slike od leče z b, velikost predmeta z A ter
velikost slike z B, iz prvega para trikotnikov sledita razmerji: A : a = B : b
iz drugega pa A : f = B : b − f . Ko te zveze preuredimo, pridemo do
enačbe leče, ki povezuje oddaljenost predmeta in slike od leče ter goriščno
razdaljo:

1

f
=

1

a
+

1

b
. (25.1)

Enačba leče velja tako za zbiralne kot tudi za razpršilne leče, upoštevati
moramo le, da je goriščna razdalja razpršilnih leč negativna. Po dogovoru
ima a vedno pozitiven predznak, b pa ima pozitiven predznak, če je slika
realna (in je torej na drugi strani leče kot predmet) ter negativnega, če je
slika navidezna (in je torej na isti strani leče kot predmet).

Velikost slike predmeta je odvisna od oddaljenosti predmeta od leče.
Bližje kot je predmet gorišču zbiralne leče, večja in bolj oddaljena je realna
slika (ko je predmet v gorišču, nastane slika v neskončnosti). S pomočjo
zgoraj opisanih podobnih trikotnikov lahko izpeljemo razmerje med veli‑
kostjo slike in velikostjo predmeta:

N =
B

A
=
b

a
=
e

f
, (25.2)

kjer je e razdalja med goriščem leče in sliko predmeta, e = b−f . S pomočjo
enačbe leče ugotovimo tudi, da je realna slika, preslikana z zbiralno lečo,
povečana le, če je oddaljenost predmeta od leče med f in 2f .
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Poleg zgornjih enačb velja za tanke leče tudi preprosta zveza za skupno
lomnost sistema dveh leč, ki sta ena tik zraven druge. Rezultat navedimo
brez izpeljave:

1

f
=

1

f1
+

1

f2
. (25.3)

Če več leč postavimo skupaj, se njihove lomnosti torej seštevajo.

25.2 Povečevalno steklo
Najpreprostejši optični inštrument, ki nam pomaga pri opazovanju majh‑
nih predmetov, je povečevalno steklo. Poglejmo si, kako deluje. Navidezna
velikost predmetov, ki jo zaznavamo s prostimi očmi, ni odvisna le od nji‑
hove dejanske velikosti ampak tudi od njihove oddaljenosti. Navidezna
velikost predmetov je torej odvisna od zornega kota, pod katerim vidimo
predmet (slika 25.3). Ponavadi tudi povečavo optičnih inštrumentov defi‑
niramo glede na to, kako nam povečajo zorni kot pod katerim skozi inštru‑
ment gledamo predmet.

Ko predmet gledamo s prostim očesom, si ga lahko navidezno pove‑
čamo tako, da ga približamo očesu. Vendar pa s prostim očesom ne mo‑
remo izostriti predmetov, ki so preblizu očesa (o tem več v nadaljevanju).
V takem primeru si lahko pomagamo s povečevalnim steklom, ki ni nič
drugega kot zbiralna leča z dovolj veliko lomnostjo. Če postavimo med
predmet in oko povečevalno steklo, vidimo navidezno sliko predmeta, ki
pa je od našega očesa bolj oddaljena in jo bomo zato lažje izostrili (sliki
25.2B in 25.2C). Ponavadi predmet postavimo kar v gorišče, oko pa tik za
povečevalno steklo – na tak način so žarki z ene točke predmeta na drugi
strani leče vzporedni in lahko gledamo s sproščenim očesom (slika 25.2B).
Povečevalno steklo nam torej predmeta pravzaprav ne »poveča«, ampak
nam ga le pomaga izostriti pri zelo majhni oddaljenosti od očesa.

Povečavo povečevalnega stekla definiramo glede na velikost predme‑
ta, ki jo vidimo pri normalni zorni razdalji x0, katere vrednost je določena na
25 cm. Ta razdalja namreč približno ustreza najmanjši razdalji, na kateri
lahko predmete s prostim očesom še izostrimo. Z enačbo se povečavo de‑
finira kot razmerje tangensa zornega kota θl, pod katerim vidimo predmet
skozi lečo povečevalnega stekla, ter tangensa zornega kota θ0, pod katerim
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Slika 25.3: (A) Velikost predmeta, ki jo vidimo z očesom, je odvisna od zornega
kota θ, pod katerim vidimo predmet. Bližje kot je predmet, večji je zorni kot in
večja je navidezna velikost predmeta (tj. večja je slika na mrežnici). (B) Predmet si
navidezno povečamo s približevanjem očesu, a ga dosti bliže od normalne zorne
razdalje (x0) ne moremo izostriti. Povečave optičnih inštrumentov so zato defi‑
nirane glede na navidezno velikost predmeta na normalni zorni razdalji. (C) Pri
gledanju s povečevalnim steklom vidimo predmet pod zornim kotom θl, ker pa
so žarki iz ene točke predmeta vzporedni, oko prilagodimo gledanju na daleč in z
ostrenjem predmeta nimamo težav. Oko je na vseh treh slikah prikazano shema‑
tično.

vidimo predmet, ki je na normalni zorni razdalji: N = tan θl/ tan θ0. V pri‑
meru, ko predmet postavimo ravno v gorišče leče, je zorni kot, pod katerim
skozi lečo vidimo predmet, enak tan θl = A/fl (slika 25.3C) , pri gledanju
s prostim očesom na normalni zorni razdalji pa velja tan θ0 = A/x0 (slika
25.3B). V tem primeru je torej povečava povečevalnega stekla enaka

N =
tan θl
tan θ0

=
x0
fl
. (25.4)

Iz enačbe 25.4 razberemo, da nam povečevalno steklo pomaga le, če je
njegova goriščna razdalja manjša od normalne zorne razdalje. Tipične po‑
večave povečevalnih stekel so do približno 10x. Povečevalno steklo včasih
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imenujemo tudi lupa 3.

25.3 Mikroskop
Mikroskop je inštrument za opazovanje mikroskopskih predmetov. Ob‑
staja več različnih vrst mikroskopov, van Leeuwenhoekov »mikroskop« je
bil na primer le povečevalno steklo z zelo majhno goriščno razdaljo. Tu si
bomo ogledali delovanje najbolj preprostega sestavljenega mikroskopa, ki
ima dve zbiralni leči: objektiv in okular. Pri takem mikroskopu predmet
postavimo malo pred gorišče objektiva. Objektiv predmet tako preslika v
realno in povečano sliko. To sliko nato povečamo še z okularjem, ki ga
uporabimo kot povečevalno steklo. Okular je torej postavljen tako, da nje‑
govo gorišče sovpada s sliko predmeta, ki jo preslika objektiv. Žarki, ki
izhajajo iz ene točke predmeta, so pri izstopu iz okularja vzporedni, zato
so naše oči pri gledanju skozi mikroskop lahko sproščene.

Slika 25.4: Prikaz poti treh značilnih žarkov skozi mikroskop.

Iz slike 25.4 razberemo, da je tangens zornega kota, pod katerim vidi‑
mo predmet skozi mikroskop, enak tan θ = B/fOK , tako da je povečava
mikroskopa enaka

3»Lupa« včasih imenujemo tudi inštrument, ki si ga kirurgi na očala pritrdijo med
operacijo. Ta inštrument je sestavljen in več leč in je bolj podoben daljnogledu kot pove‑
čevalnemu steklu.
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N =
tan θ
tan θ0

=
B/fOK

A/x0
=

e

fOB

x0
fOK

, (25.5)

kjer smo upoštevali razmerje B : A = e : fOB (en 25.2). Po pričakovanju je
povečava mikroskopa enaka produktu povečave objektiva (NOB = e/fOB)
in povečave okularja (NOK = x0/fOK).

S povečevanjem lomnosti objektiva bi njegovo povečavo lahko pove‑
čevali v nedogled. Vendar pa se izkaže, da nas pri povečevanju majhnih
predmetov omejuje uklon svetlobe na robovih leče. Zaradi uklanjanja žar‑
kov se točka skozi lečo ne preslika v točko, temveč v majhno okroglo liso.
Če sta dve točki zelo blizu skupaj, se bosta njuni sliki zlili skupaj. Najmanj‑
šo razdaljo med točkama, ki ju objektiv še preslika v dve ločeni lisi, ime‑
nujemo ločljivost objektiva. Iz poglavja o uklonu se spomnimo, da je uklon
odvisen od razmerja med valovno dolžino in velikostjo odprtine. Daljši
račun pokaže, da je tudi ločljivost mikroskopa (d) tem boljša, čim krajša je
valovna dolžina:

d =
0,61λ

NA
. (25.6)

kjer je NA numerična apertura objektiva, λ pa valovna dolžina svetlobe,
s katero opazujemo predmet. Numerična apertura je merilo za količino
žarkov, ki jih zbere objektiv, in je definirana kot

NA = n sinα , (25.7)

kjer je n lomni količnik snovi med predmetom in objektivom, α pa kot med
optično osjo in veznico med goriščem ter robom objektiva. Večja kot je le‑
ča pri dani goriščni razdalji, večjo numerično aperturo ima. Numerična
apertura je večja pri imerzijskih objektivih, pri katerih med predmetom in
objektivom ni zraka (n ≈ 1), temveč imerzijsko olje (n ≈ 1,4). Ker je sinα
lahko največ ena, je največja mogoča NA pri najboljših imerzijskih objekti‑
vih približno 1,4. Tudi ločljivost najboljših objektivov tako ne more bistve‑
no presegati valovne dolžine svetlobe λ, s katero opazujemo predmet.
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25.4 Napake leč
Ves zgornji opis strogo vzeto velja le v limiti zelo tankih leč in žarkov, ki so
vseskozi blizu optični osi. V praksi pa leče ne morejo biti neskončno tanke,
pa tudi žarki na njih padajo pod večjimi koti. Izkaže se, da leč pravzaprav
sploh ne znamo narediti tako, da bi v celoti ustrezale vsem zgornjim kri‑
terijem. Pravimo, da imajo realne leče napake oz. aberacije. Vseh aberacij
se je nemogoče znebiti, zato je ena od glavnih umetnosti izdelave optičnih
inštrumentov zmanjševanje tistih aberacij, ki so za uporabo določenega in‑
štrumenta najbolj moteče. Za ilustracijo si oglejmo le tri najpreprostejše
vrste aberacije leč.

Sferična aberacija. Zaradi te napake se vsi vzporedni žarki ne sekajo v
isti točki (bolj kot so žarki oddaljeni od optične osi, bliže leči se sekajo). To
napako se da delno popraviti z asferičnim oblikovanjem površine leče.

Astigmatizem. Pri astigmatizmu leča ni povsem simetrična okoli svo‑
je geometrijske osi in je zaradi tega npr. lomnost leče v navpični smeri
drugačna kot v vodoravni smeri (površina leče npr. ni krogelna, ampak
elipsoidna). Žarki s predmetov, ki potujejo skozi navpičnico leče, se tako
ne sekajo v isti točki kot žarki, ki potujejo skozi vodoravnico leče. Če se ta
napaka pojavi v očesni leči, jo odpravimo z očali, katerih stekla so ravno
tako zbrušena neosnosimetrično.

Kromatična aberacija. V vsaki prozorni snovi je večja ali manjša disperzi‑
ja, tj., hitrost svetlobe in s tem lomni količnik sta za različne valovne dolžine
različna. Lomnost leče za rdečo barvo je tako ponavadi malo drugačna od
lomnosti leče za modro barvo, zato barvna slika predmeta skozi lečo ni
povsem ostra. Pri optičnih napravah je mogoče kromatično aberacijo omi‑
liti s sestavljenimi lečami, ki so sestavljene iz stekel z različnimi lastnostmi
(na eni leči se npr. bolj lomi modra barva na drugi leči pa rdeča). Pri dobrih
mikroskopih sta tako objektiv in okular vedno sestavljena iz več leč.

25.5 Oko
Skozi dolga leta evolucije se je človeško oko prilagodilo gledanju v zelo
različnih razmerah in se tako razvilo v enega najbolj izpopolnjenih optičnih
inštrumentov. Tu si bomo ogledali le najosnovnejše lastnosti očesa. Glavni
sestavni deli očesa so roženica in očesna leča, ki zbirata svetlobne žarke, ter
mrežnica, v kateri so čutnice za svetlobo (slika 25.5).
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Slika 25.5: Shematični prikaz anatomije očesa. (A) Prerez očesa. Sproščena oče‑
sna leča je narisana s polno črto, leča med akomodacijo za gledanje na blizu pa
pikčasto. (B) Prerez mrežnice. Celotna mrežnica je debela približno 0,2 mm, pri
čemer so fotoreceptorji (paličice in čepki) v najgloblji plasti.

25.5.1 Optične lastnosti
V očesu se svetlobni žarki najprej lomijo na roženici in nato še na očesni leči.
Roženica in očesna leča tako delujeta kot sistem dveh zbiralnih leč. Skupna
lomnost očesa v sproščenem stanju je približno 60 D, od česar pa pravza‑
prav večji del odpade na roženico (40 D), na očesno lečo pa le približno 20
D. Očesa ne moremo povsem natančno opisati z enostavnim sistemom tan‑
kih leč, ki smo jih srečevali do sedaj (pri očesu npr. lomni količnik ni enak
na obeh straneh leče, zato tudi goriščna razdalja na obeh straneh ni enaka),
kljub vsemu pa si pri razumevanju delovanja očesa pogosto pomagamo s
preprostejšimi modeli, imenovanimi reducirano oko.

Predmete vidimo ostro, če na mrežnici nastane njihova ostra realna sli‑
ka. Razdalja med očesno lečo in mrežnico je fiksna, zato oko različno odda‑
ljene predmete izostri s prilagajanjem lomnosti očesne leče – pri gledanju
zelo oddaljenih predmetov je potrebna manjša lomnost kot pri gledanju
bližnjih predmetov (slika 25.6). Iz enačbe leče (enačba 25.1) namreč sledi,
da se mora pri fiksni razdalji b z manjšanjem razdalje a manjšati tudi go‑
riščna razdalja leče f . Lomnost očesne leče prilagajamo s pomočjo ciliarne
mišice: če so ciliarne mišice sproščene, je lomnost očesne leče najmanjša
in oko lahko izostri oddaljene predmete, če pa se mišica napenja, poveča
ukrivljenost očesne leče ter s tem njeno lomnost in izostrimo lahko bližnje
predmete. Ta proces se imenuje akomodacija očesa.
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Slika 25.6: Shematični prikaz po‑
večevanja lomnosti očesne leče pri
ostrenju bližnjih predmetov (akomo‑
daciji). Ko ostrimo zelo oddaljene
predmete (zgoraj), je lomnost oče‑
sa najmanjša (goriščna razdalja oče‑
sa f je največja). Pri ostrenju bližnjih
predmetov (spodaj) se lomnost oče‑
sne leče poveča (zmanjša se goriščna
razdalja očesa f ). Očesne mišice so
pri gledanju na daleč sproščene, med
akomodacijo pa napete.

25.5.2 Mrežnica
V mrežnici so fotoreceptorske celice dveh vrst: čepki so prilagojeni za gle‑
danje pri dnevni svetlobi (t. i. fotopično gledanje), paličice pa za gledanje v
mraku in temi (skotopično gledanje). Ko se foton svetlobe absorbira v mo‑
lekuli fotopigmenta, ki je v fotoreceptorjih, povzroči njeno konformacijsko
spremembo, kar sproži zapleten biokemijski proces, ki vodi do nastanka
živčnega signala. Živčni signali nato potujejo po očesnem živcu v možga‑
ne, pri čemer pa se lahko živčni signali več sosednjih fotoreceptorskih celic
tudi združijo in delno obdelajo že v mrežnici.

V paličicah je fotopigment ene vrste (rodopsin), zato s paličicami ne
moremo zaznavati barv (v mraku barve slabo razlikujemo), čepki pa so
treh vrst in z njimi lahko zaznavamo različne barve.

Postavitev fotoreceptorskih celic v mrežnici je na prvi pogled neučin‑
kovita, saj so oživčene na strani, s katere nanje pada svetloba, in se zato del
svetlobe absorbira v živčnih vlaknih še preden pride do svetlobnih čutnic
(slika 25.5B). Vendar pa raziskave kažejo, da imajo nekatere celice v mre‑
žnici višji lomni količnik od okolice in tako delujejo kot svetlobni vodniki,
ki svetlobo vodijo skozi mrežnico do fotoreceptorskih celic.

25.5.3 Občutljivost
Oko se izredno dobro prilagaja različno močni svetlobi, saj razločuje go‑
stoto svetlobnega toka v razponu približno 1010 W/m2 (od približno 10−6
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W/m2 pa do 104 W/m2). Vendar pa oko le zelo majhen del tega prilagajanja
doseže s spreminjanjem premera zenice. Premer zenice se lahko spreminja
od približno 3 mm do 9 mm, s čimer lahko količino svetlobe uravnavamo
le za približno faktor 10 (če se premer zenice trikrat poveča, se njena povr‑
šina poveča devetkrat). Vse ostalo prilagajanje različno močni svetlobi se
doseže s prilagajanjem biokemijskih procesov v fotoreceptorjih. To prila‑
gajanje ni hitro – tega se zavemo, ko iz temnega prostora stopimo na svetlo
ali obratno.

Na normalni zorni razdalji je ločljivost zdravega očesa približno 200μm.
Omejena ločljivost je v največji meri pogojena z razdaljo med fotoreceptorji
na mrežnici – če želimo z očesom razločiti dve sosednji točki, mora svetloba
z njiju pasti na dva različna fotoreceptorja.

25.5.4 Zaznavanje barv

Čepki so treh vrst in se med seboj ločijo po spektralni občutljivosti foto‑
pigmenta. V čepkih S je fotopigment, ki je relativno najbolj občutljiv za
modro barvo (pri 426 nm), fotopigment v čepkih L za rdečo (pri 560 nm),
fotopigment v čepkih M pa je najbolj občutljiv pri 530 nm (Oznake S, L in M
so povezane z angleškimi izrazi short, long in medium wavelength). Raz‑
lične barve vzbudijo različne vrste čepkov različno močno, kar možganom
omogoči, da barve ločijo med seboj (slika 25.7). Če neka svetloba vse tri vr‑
ste čepkov vzbudi enako, jo vidimo kot belo. Celotni vidni spekter, ki ga
oko lahko zazna, je od približno 380 nm do 700 nm. Krajše valovne dolžine
(ultravijolična svetloba) se absorbirajo že v roženici in do mrežnice sploh
ne pridejo, daljše valovne dolžine (infrardeča svetloba) pa se sicer absorbi‑
rajo v mrežnici, a nimajo dovolj energije, da bi povzročile konformacijsko
spremembo fotopigmentov. Prevelika izpostavljenost UV svetlobi nam ta‑
ko poškoduje roženico, prevelika izpostavljenost IR svetlobi pa mrežnico.
V mraku barve težje razločimo, saj takrat uporabljamo predvsem skoto‑
pično zaznavanje s paličicami, ki so precej bolj občutljive kot čepki (slika
25.7).

25.5.5 Kratko in daljnovidnost

Če je lomnost očesa prevelika glede na velikost očesa, nastane slika ne‑
skončno oddaljenih predmetov malo pred mrežnico tudi v sproščenem sta‑
nju očesa, ko je njegova lomnost najmanjša možna. Z napenjanjem mišic
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Slika 25.7: Shematičen prikaz odvi‑
snosti relativne občutljivosti čepkov
od valovne dolžine [34]. Čepki S so
najbolj občutljivi pri 426 nm, čepki
M pri približno 530 nm, čepki L pa
pri približno 560 nm. Črtkano je pri‑
kazana še spektralna občutljivost pri
skotopičnem gledanju, ko svetlobo
zaznavamo s paličicami. Svetlobna
občutljivost pri skotopičnem gleda‑
nju je mnogo večja kot pri fotopič‑
nem.

slike seveda ne moremo izostriti, saj akomodacija očesa lomnost očesne
leče le še poveča. Zato pa lahko celotno lomnost očesnega sistema zmanj‑
šamo z očali z negativno lomnostjo (negativno dioptrijo) – spomnimo se,
da je celotna lomnost vsota lomnosti očesa in očal, enačba 25.3 (ta izraz je
bolj točen za kontaktne leče, ki se oči zares dotikajo).

Po drugi strani daljnovidno oko svoje lomnosti ne more dovolj poveča‑
ti, da bi lahko izostrilo bližnje predmete. Do daljnovidnosti pogosto pride
s starostjo, ko se zmožnost akomodacije očesa zmanjšuje. Pomagamo si z
očali s pozitivno lomnostjo.

25.5.6 Ostrina vida
Poleg zmožnosti ostrenja na naš vid zelo vpliva tudi omejena ločljivost oče‑
sa. Kotna ločljivost očesa pri dnevni svetlobi je približno 1 kotno minuto,
kar pomeni, da lahko na normalni zorni razdalji med seboj ločimo dve toč‑
ki, ki sta med seboj oddaljeni približno 0,1 mm (sliki točk sta na mrežnici
tako oddaljeni približno 10μm). Omejena ločljivost je posledica končno
velikih fotoreceptorjev na mrežnici (če svetloba iz dveh bližnjih točk pade
na isti fotoreceptor, ju z očesom seveda ne bomo mogli razločiti), dodatno
pa se lahko poslabša tudi zaradi različnih boleznih, npr. zaradi sive mre‑
ne. Ločljivost pri gledanju v mraku je še slabša kot pri dnevni svetlobi, saj
pri skotopičnem vidu k enemu živčnemu signalu prispeva veliko sosednjih
paličic in je torej efektivna površina, na kateri se zaznava svetloba, veliko
večja kot pri zaznavanju s čepki.
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Poglavje 26

Rentgen

Eno večjih revolucij v medicini je sprožila znamenita slika kosti v dlani
Anne Berthe Ludwig, ki jo je 22. decembra 1895 posnel njen mož nemški
fizik Wilhelm Conrad Roentgen (slika 26.1A). Rentgensko slikanje je bila
namreč prva metoda, s katero so zdravniki lahko pogledali v telo, ne da bi
ga morali pred tem razrezati s skalpelom. Novo odkrite žarke je Roentgen
poimenoval žarki‑X in tako jih še danes imenujejo v anglosaškem svetu
(X‑rays), v kontinentalni Evropi pa se je po Roentgenovi smrti uveljavilo
ime rentgenski žarki. Čeprav je od njihovega odkritja minilo že 125 let,
se osnovne značilnosti rentgenskega slikanja niso spremenile in rentgen
ostaja osrednja diagnostična slikovna metoda.

V poglavju o elektromagnetnem valovanju smo spoznali, da so rentgen‑
ski žarki elektromagnetno valovanje z zelo kratko valovno dolžino oz. da
imajo rentgenski fotoni zelo veliko energijo (tabela 24.1). V diagnostiki se
uporabljajo predvsem rentgenski žarki z energijami od 10 keV do 200 keV,
kar ustreza valovnim dolžinam od približno 100 pm do 5 pm. Energija
rentgenskih fotonov je mnogo večja od tipičnih elektronskih prehodov v
zunanjih lupinah atomov in molekul, zato skozi tkivo prodirajo bistveno
bolje kot npr. vidna svetloba. Po drugi strani je njihova energija več kot
dovolj velika za ionizacijo atomov in molekul (spomnimo se, da so ioni‑
zacijske energije molekul reda velikosti nekaj eV), zato so rentgenski žarki
ionizirajoče sevanje in lahko s povzročanjem ionizacij v tkivu zelo poško‑
dujejo celice oz. njihov dedni material. Rentgensko slikanje je tako po eni
strani zelo uporabno, po drugi pa tudi škodljivo, zato ga ne smemo upo‑
rabljati po nepotrebnem.

V tem poglavju bomo opisali glavne značilnosti rentgenskega slikanja,
od nastanka rentgenih žarkov, do njihove poti skozi telo in detekcije sence
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telesa (slika 26.1B).

A B

Slika 26.1: A) Ena prvih rentgenskih slik, ki jih je decembra 1895 posnel Wilhelm
Conrad Roentgen, prikazuje roko njegove žene Anne Berthe Ludwig (na sliki je
viden tudi prstan, ki ga je nosila). Osnovni princip slikanja se od takrat ni spreme‑
nil in je shematično prikazan na sliki B). Rentgenski žarki izhajajo iz rentgenske
cevi, potujejo skozi telo in na drugi strani preiskovanca na detektorju pustijo senco
telesnih organov. Kontrast med organi na sliki je odvisen od absorpcije rentgen‑
skih žarkov v njih ‑ večja kot je absorpcija v organu, manj žarkov pride skozenj
do detektorja in bolj svetla je slika organa na rentgenski sliki (to velja za klasično
rentgensko slikanje na fotografski film, pri nekaterih drugih tehnikah pa lahko sli‑
ko prikažemo tudi z obrnjenimi barvami). Nekaterim žarkom se zaradi sipanja v
telesu spremenita smer in energija, zaradi česar lahko poslabšajo kontrast na sliki
ali obsevajo okolico (sipani žarki so prikazani s sivo črtkano črto).

26.1 Izvor rentgenskih žarkov – rentgenska cev
Energija rentgenskih fotonov je mnogo večja od tipičnih elektronskih pre‑
hodov v zunanjih lupinah atomov in molekul, zato rentgenski žarki ne mo‑
rejo nastajati pri kemijskih procesih na nivoju molekul ali zaradi njihovega
termičnega gibanja. Za nastanek rentgenski žarkov so potrebni procesi, pri
katerih se sprosti veliko energije in ki jih v vsakdanjem življenju v naravi
ne srečamo pogosto. Za produkcijo rentgenskih žarkov je bila tako ključna
iznajdba katodne cevi, v kateri z močnim električnim poljem ustvarimo hitre
elektrone, ki imajo zelo veliko kinetično energijo (katodna cev je preprosta
predhodnica pospeševalnikov, kakršen je danes tisti v CERNu, v katerem
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so odkrili Higgsov bozon). Princip produkcije rentgenskih žarkov je danes
še vedno enak kot pred stotimi leti (slika 26.2): v vakuumski cevi sta kato‑
da in anoda, med katerima je zelo visoka električna napetost (od 10 kV do
200 kV). Na strani s katodo je kovinski filament, ki ga z električnim tokom
segrevamo, zaradi česar iz filamenta izhajajo elektroni. Ker je v cevi va‑
kuum, se ti elektroni v električnem polju med katodo in anodo neovirano
pospešijo in nato z veliko hitrostjo trčijo v anodo. Visokoenergijski elek‑
troni med ustavljanjem v anodi svojo kinetično energijo oddajajo v obliki
elektromagnetnega sevanja – rentgenskih žarkov. Katodno cev, s katero
proizvajamo rentgenske žarke, imenujemo rentgenska cev.

anoda

okno

vakuum

nizka napetost
( ~ 10 V)

visoka napetost
( od 10 kV do 200 kV)

katoda

razžarjen filament

rentgenski žarki

filter

Slika 26.2: Shematični prikaz delovanja rentgenske cevi. Rentgenska cev je va‑
kuumska cev s katodo in anodo, med katerima je visoka napetost (v medicini se
uporabljajo napetosti od 10 kV do 200 kV). Na strani katode je tanek kovinski fila‑
ment, skozi katerega teče električni tok, zaradi česar se filament segreva in iz njega
izhajajo elektroni. Elektroni v električnem polju med katodo in anodo zelo pospe‑
šijo in dobijo veliko kinetično energijo. Ko trčijo v anodo, med ustavljanjem svojo
energijo oddajo v obliki rentgenskih žarkov. Oblika spektra rentgenskih žarkov
je odvisna od vrste snovi v anodi in od pospeševalne napetosti, njihovo število pa
lahko uravnavamo s tokom skozi filament v katodi – bolj kot razžarimo filament,
več elektronov izhaja iz njega in trči v anodo in več rentgenskih žarkov nastane.
Na izsevani spekter lahko vplivamo tudi z izbiro filtra na izhodu iz cevi.

V medicini za različne aplikacije uporabljamo različne valovne dolžine
rentgenskih žarkov. Da bomo razumeli, kako pri rentgenski cevi nastaviti
ustrezen spekter izsevanih žarkov, si najprej poglejmo dva osnovna pro‑
cesa, s katerima žarki nastanejo med ustavljanjem visoko‑energijskih elek‑
tronov v anodi (slika 26.3). Prvi mehanizem je t. i. zavorno sevanje (slika
26.3A). Do njega pride, ko se hitri elektron ustavlja v močnem električnem
polju v bližini težkih atomskih jeder. Spekter izsevanih rentgenskih žarkov
pri zavornem sevanju je zvezen, pri čemer pa izsevani rentgenski fotoni ne
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morejo imeti energije, ki je višja od energije posameznih elektronov, ki se
ustavljajo v anodi (foton energije ne more dobiti od dveh elektronov hkra‑
ti). V poglavju o električnih pojavih smo spoznali, da je energija, ki jo dobi
elektron v električnem polju, sorazmerna električni napetosti, ki jo prele‑
ti, ∆We = e0U (enačba 15.8), zaradi tega je energija elektronov določena s
pospeševalno napetostjo med katodo in anodo: če se elektron pospeši z na‑
petostjo x kV, dobi energijo x keV. Z nastavljanjem te napetosti lahko torej
vplivamo na največjo energijo fotonov, ki jih seva rentgenska cev. Valov‑
na dolžina je obratno sorazmerna z energijo fotona (spomnimo se enačbe
24.3, ki smo jo spoznali pri elektromagnetnem valovanju), zato s tem hkrati
nastavimo tudi najkrajšo valovno dolžino izsevanih rentgenskih žarkov.

-e -e

-e -e

-e -e

-e -e

-e

-e -e

-e

-e-e

-e -e

+p +pn n
n n
n n
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+p +p+p +p

+p +p

-e -e

A B

-e

Slika 26.3: Shematični prikaz dveh mehanizmov nastanka rentgenskih žarkov
ob ustavljanju visokoenergijskih elektronov v anodi rentgenske cevi. A) Zavor‑
no sevanje. Med ustavljanjem v električnem polju jeder elektroni svojo energijo
izgubljajo s sevanjem rentgenskih žarkov različnih valovnih dolžin. B) Značilno
sevanje. Če ima elektron dovolj energije, lahko iz notranje atomske lupini izbije
elektron. Izpraznjeno mesto zapolni elektron iz višje lupine in pri tem odda rent‑
genski žarek (preskok je shematično prikazan z modro puščico). Valovne dolžine
značilnega sevanja so natančno določene z energijami prehodov med atomskimi
lupinami in so zato za vsako vrsto atomov drugačne.

Drugi mehanizem nastanka rentgenskih žarkov je povezan z izbijanjem
elektronov iz notranjih lupin težkih atomov v anodi (slika 26.3B). Če na‑
mreč visoko‑energijski elektron, ki prileti iz katode, izbije elektron iz notra‑
nje lupine atoma v anodi, bo le tega nadomestil elektron iz katere od višjih
lupin, pri čemer pa bo oddal foton z značilno energijo, ki je enaka ener‑
giji prehoda med tema lupinama. Tako izsevani rentgenski fotoni imajo
energijo, ki je enaka energiji prehoda elektronov med notranjimi atomski‑
mi lupinami. Te energije so pri vsaki vrsti atomov drugačne, zato tako
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izsevane rentgenske žarke imenujemo značilno sevanje, njihove energije oz.
valovne dolžine pa so odvisne od vrste atomov v anodi. Najpogosteje se
uporablja anode iz volframa1, pri katerih ima značilno sevanje energijo pri‑
bližno 59 keV in 69 keV. Če potrebujemo rentgenske žarke nižjih energij,
uporabimo anodo iz molibdena, pri katerem je značilno sevanje približno
pri 17,5 keV in 19,6 keV.

Spekter žarkov, ki sevajo iz rentgenske cevi, je torej sestavljen tako iz za‑
vornega sevanja kot tudi iz značilnega sevanja. Slika 26.4A prikazuje spek‑
ter volframove anode, če je pospeševalna napetost nastavljena na 100 kV. V
tem primeru bodo imeli elektroni, ki se zaletijo v anodo, energijo 100 keV
in taka bo tudi največja energija v spektru sevanja rentgenske cevi. Na sli‑
ki tudi vidimo, da cev pri največji možni energiji seva le malo fotonov in
da je vrh zveznega spektra zavornega sevanja pri bistveno nižjih energi‑
jah, v našem primeru med 30 keV in 40 keV. V spektru sta vidna tudi dva
ostra vrhova, ki ustrezata značilnemu sevanju volframa. Če pospeševalno
napetost znižamo, se ustrezno zniža tudi največja energija izsevanih foto‑
nov, hkrati pa tudi celotno število izsevanih fotonov (slika 26.4B). Položaj
značilnih vrhov se pri tem ne spremeni, saj je le‑ta odvisen le od energij‑
skih prehodov v atomih volframa. Če je pospeševalna napetost prenizka,
iz spektra seveda izginejo tudi značilni vrhovi, saj v tem primeru visoko‑
energijski elektroni nimajo dovolj energije za izbijanje elektronov iz notra‑
njih atomskih lupin.

Na količino izsevanih fotonov lahko vplivamo tudi s spreminjanjem ka‑
todnega toka elektronov. Če povečamo električni tok skozi filament pri
katodi, se filament bolj segreje, iz njega izhaja več elektronov, več jih trči
v anodo in zato se izseva tudi več fotonov. Ker pa s spreminjanjem ka‑
todnega toka ne spreminjamo energije elektronov, z njim vplivamo le na
količino izsevanih fotonov, ne pa tudi na obliko izsevanega spektra (slika
26.4C).

Če namesto volframove anode vzamemo molibdenovo, bo oblika spek‑
tra zavornega sevanja v grobem podobna kot pri volframu, le vrhovi zna‑
čilnega sevanja bodo pri drugih energijah (26.4D). Na izsevan spekter lah‑
ko vplivamo tudi z ustreznimi filtri, ki jih postavimo pred izhodno okno
cevi (slika 26.2) in ki absorbirajo le del izsevanega spektra. Z njimi poskrbi‑
mo, da iz izsevanega spektra odstranimo valovne dolžine, ki jih cev seva, a
bi bile za slikanje neprimerne. Filtri so največkrat kar tanke kovinske plo‑

1Po angleško se volframu reče tungsten, zato v anglosaški literaturi uporabljajo ta iz‑
raz.
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Slika 26.4: Prikaz spektra žarkov, izsevanih iz rentgenske cevi [35]. A) Spekter
volframove (W) anode pri pospeševalni napetosti 100 kV. Zvezni del spektra je
posledica zavornega sevanja, ostra vrhova pa predstavljata značilno sevanja, ki je
za volfram v bližini energij 58 keV in 68 keV. Največja energija izsevanih fotonov
je enaka kinetični energiji elektronov v cevi in je torej sorazmerna pospeševalni
napetosti (v prikazanem primeru je 100 keV). B) Odvisnost spektra od pospeše‑
valne napetosti. Z nižanjem pospeševalne napetosti se manjšata energija in število
izsevanih fotonov. Energije značilnega sevanja se ne spremenijo, značilno sevanje
izgine šele, če se elektroni v cevi nimajo potrebne kinetične energije za izbijanje
elektronov iz ustreznih notranjih atomskih lupin. C) Odvisnost spektra od kato‑
dnega toka. Od katodnega toka elektronov je odvisno le število izsevanih fotonov,
ne pa oblika izsevanega spektra. D) Spekter molibdenove (Mo) anode pri pospeše‑
valni napetosti 26 kV. Značilno sevanje molibdenove anode je pri nižjih energijah
(približno pri 17,5 keV in 19,6 keV) , zato se take anode uporabljajo za produkcijo
mehkejših žarkov, ki jih potrebujemo npr. za mamografijo. Slika prikazuje tudi,
kako se spremeni spekter, če na izhod anode postavimo filter iz tanke plasti mo‑
libdena.
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šče, narejene iz istega materiala kot anoda. Na sliki 26.4D npr. vidimo,
da lahko pri molibdenski anodi z uporabo molibdenskega filtra iz seva‑
nja izločimo žarke zavornega sevanja, s čimer izsevani žarki postanejo bolj
monokromatski (imajo ožji spekter). Za slikanje različnih struktur v telesu
so primerne različne energije rentgenskih žarkov, zato mora radiolog za
vsako vrsto slikanja izbrati ustrezno anodo in filter ter primerno nastaviti
katodni tok in pospeševalno napetost.

26.2 Interakcija s snovjo
Valovna dolžina rentgenskih žarkov je tako majhna, da se na poti skozi
snov ne menijo za molekularno strukturo snovi temveč interagirajo nepo‑
sredno z elektroni in jedri atomov. Oslabitev žarkov v snovi je tako odvi‑
sna le od števila in teže atomov v snovi (težji atomi imajo več protonov in
več elektronov zato z rentgenskimi žarki močneje interagirajo), ne pa od
vrste molekul, v katere so ti atomi povezani.

Rentgenski žarki, ki se uporabljajo v diagnostiki, s snovjo najpogosteje
interagirajo preko dveh mehanizmov (slika 26.5). Prvi mehanizem je fo‑
toefekt, pri katerem rentgenski foton iz atoma izbije notranji elektron, pri
čemer se absorbira celotna energija fotona. Drugi mehanizem interakcije
s snovjo je sipanje, pri katerem rentgenski žarki interagirajo z zunanjimi
elektroni v atomih, zaradi česar se jim spremeni smer gibanja, lahko pa
izgubijo tudi nekaj svoje energije (obstajata tudi dve vrsti sipanja: sipanje
pri katerem fotoni ne izgubljajo energije se imenuje Rayleighovo sipanje, če
pa fotoni ob sipanju del svoje energijo izgubijo, gre za Comptonovo sipanje).
Sipani rentgenski žarki se lahko sipljejo še naprej, zato je njihova pot skozi
snov lahko zelo zapletena.

Rentgenski žarki se na poti skozi tkivo torej oslabijo zaradi absorpcije
in zaradi sipanja. V poglavju o splošnih lastnostih valovanja smo spoznali,
da je absorpcija žarkov v snovi eksponenten proces (enačba 21.6). Oslabi‑
tev zaradi sipanja je bolj zapletena, saj lahko sipani fotoni po večkratnem
sipanju spet dobijo smer prvotnega žarka. Vseeno v prvem približku po‑
gosto zapišemo, da tudi oslabitev (atenuacija) rentgenskih žarkov na poti
skozi tkivo poteka po absorpcijskem zakonu (enačba 21.6):

j = j0e
−µx , (26.1)

kjer je j0 vpadna energijska gostota rentgenskih žarkov, x je prepotovana
razdalja po tkivu, µ pa je absorpcijski koeficient snovi. Če si želimo po‑
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Slika 26.5: Shematični prikaz dveh glavnih načinov interakcije rentgenskih žar‑
kov s snovjo. A) Fotoelektrični efekt. Rentgenski foton izbije notranji elektron
iz atoma, pri čemer se energija fotona absorbira v snovi. B) Sipanje. Rentgenski
foton interagira z zunanjim elektronom v atomu (lahko ga tudi izbije) in pri tem
spremeni smer gibanja ter izgubi del svoje energije valovna dolžina pa se poveča.
Oba mehanizma povzročata ionizacijo atomov in molekul v snovi.

udariti, da pri oslabitvi žarkov ne gre za čisto absorpcijo, ampak tudi za
sipanje, lahko absorpcijski koeficient imenujemo tudi atenuacijski koeficient,
mi pa bomo ostali kar pri prvotnem izrazu.

Absorpcijski koeficient za rentgenske žarke je odvisen tako od vrste
snovi kot tudi od energije žarkov. Odvisnost ni enostavna, a v grobem
velja, da težji atomi rentgenske žarke absorbirajo mnogo bolje kot lažji ter
da rentgenski žarki skozi tkivo prodirajo tem lažje, čim večjo energijo imajo
(slika 26.6). Pri energijah manjših od 40 keV velja, da je absorpcijski koe‑
ficient približno sorazmeren četrti potenci vrstnega števila atomov (Z) ter
obratno sorazmeren tretji potenci energije fotonov:

µ ∝ Z4

W 3
γ

(26.2)

Težke kovine, kot je svinec (Z = 82), torej zelo dobro zaustavljajo rent‑
genske žarke. Kosti rentgenske žarke absorbirajo precej bolje od mehkega
tkiva, saj je v njih kalcij (Z = 20), v mehkem tkivu pa prevladujejo mnogo
lažji vodik (Z = 1), ogljik (Z = 6), dušik (Z = 7) in kisik (Z = 8).

Slika 26.6A prikazuje absorpcijski spekter za rentgenske žarke za tipič‑
no mehko tkivo, kost in svinec. Pri energiji 10 keV je npr. razpolovna
debelina v mehkem tkivu enaka 1 mm, v kosti 0,1 mm, v svincu pa manj
kot 0,01 mm (na tem mestu se lahko spomnimo primera 21.1, v katerem
smo računali absorpcijo rentgenskih žarkov v svincu). Slika 26.6B prika‑
zuje primerjavo absorpcijskega koeficienta med maščobo in mehkim tki‑
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Slika 26.6: Absorpcijski spekter za rentgenske žarke v nekaterih snoveh. A) Od‑
visnost razpolovne debeline v mehkem tkivu, kosti in svincu od energije rentgen‑
skih fotonov v razponu energij od 1 keV do 10 MeV [36]. V kosti je več težjih
atomov, kot v mehkem tkivu, zato je v njej absorpcija večja (razpolovna debelina
je manjša). Atomi svinca so še težji, zato je absorpcija v svincu še veliko večja. B)
Absorpcijski (atenuacijski) koeficient v maščobi, mehkem tkivu in kosti v interva‑
lu energij, ki se uporabljajo pri rentgenskem slikanju [37]. Razlika med mehkimi
tkivi je večja pri manjših energijah.

vom. Razlika med mehkimi tkivi je večja pri nižjih energijah, zato npr. za
mamografijo uporabljamo rentgenske žarke z nižjimi energijami, saj je pri
njih kontrast med različnimi tkivi v dojki boljši.

Pri slikanju nekaterih mehkih struktur si lahko pomagamo z uporabo
kontrastnega sredstva, tj. snovi, ki zelo dobro absorbira rentgenske žarke.
V tak namen pogosto uporabljajo barijeve (Z = 56) ali jodove (Z = 53)
spojine, saj imata zaradi svoje teže oba elementa dober kontrast z mehkim
tkivom. Slednjega uporabljamo npr. pri angiografiji, pri kateri pacientu
v žile vbrizgamo jodovo raztopino in ga nato hitro slikamo z rentgenom.
Zaradi močne absorbcije rentgenskih žarkov v jodu se na sliki tako lepo
izriše oblika žil (slika 26.7).

26.3 Nastanek slike
Princip nastanka rentgenske slike je bil prikazan že v uvodu: z rentgen‑
skimi žarki posvetimo skozi preiskovanca in na drugi strani detektiramo
senco, ki jo naredijo telesne strukture. V starih časih so kot detektor upo‑
rabili kar poseben fotografski film, v katerem rentgenski žarki ionizirajo
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Slika 26.7: Prikaz angiografske slike žil v možganih [38]. Pri angiografiji pacientu
v žilo vbrizgamo kontrastno sredstvo in ga takoj nato slikamo z rentgenom. Kon‑
trastno sredstvo dobro absorbira rentgenske žarke (pri angiografiji kot kontrastno
sredstvo ponavadi uporabimo raztopino joda, ki ima veliko vrstno število), zato
se žile jasno prikažejo na sliki. Angiografske slike ponavadi prikazujemo v obra‑
tni barvni lestvici kot klasične rentgenske slike, zato so tu žile prikazane temneje
kot okoliško tkivo.

srebrov bromid, kar je nato mogoče zaznati s pomočjo kemijske reakcije,
ki poteče med razvijanjem filma. Čim več žarkov pade na neko točko na
filmu, tem močnejša je reakcija in tem bolj črna je ta točka na filmu. Sodob‑
ni rentgenski aparati uporabljajo detektorje, ki zaznane rentgenske fotone
spremenijo v električni signal in informacijo o sliki spremenijo v digitalno
obliko, sliko pa si nato ogledamo na računalniku. Digitalna rentgenska sli‑
ka je sestavljena iz mreže slikovnih točk (pikslov), podobno kot slike, ki jih
posnamemo s kamero v prenosnem telefonu. Tipični digitalni detektor je
velik približno kot dva A4 lista in ima ločljivost 2500 x 2000 pikslov, sve‑
tlost vsakega piksla pa je predstavljena s 16‑bitnim številom (na taki sliki
lahko torej prikažemo 216 = 65 536 različnih sivih odtenkov).

Dober detektor včasih ni dovolj, da bi dobili jasno in kontrastno rent‑
gensko sliko. V prejšnjem razdelku smo spoznali, da se rentgenski žarki
v telesu sipljejo in zaradi tega spremenijo smer. Slika 26.8 prikazuje, kako
lahko sipani žarki s svoje poti močno zaidejo in zadenejo slikovne točke
na drugih koncih detektorja ter s tem pokvarijo kontrast na sliki. Na sliki
vidimo, da sipani žarki na detektor padejo pod večjim kotom kot nesipani
žarki. Njihov vpliv na sliko lahko zato deloma omilimo, če pred detektor
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postavimo kovinsko radiografsko rešetko, ki absorbira žarke, ki se detektorju
približajo pod kotom.

d
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radiografska rešetka

A B C

Slika 26.8: Shematični prikaz vpliva sipanja na sliko. Slikovna točka (piksel) na
sliki je tem bolj temna, čim več fotonov pade nanjo. A) Prikaz poti direktnih žar‑
kov, ki se ne sipljejo in se oslabijo le zaradi absorpcije, zaradi česar na detektorju
ustvarijo dobro kontrastno sliko – gosta struktura absorbira več žarkov, zato je sli‑
ka za njo svetlejša. B) Žarki se v telesu tudi sipljejo, zaradi česar spremenijo smer,
zadenejo slikovne točke na drugih mestih in pokvarijo kontrast slike. Sipani žarki
na detektor padejo pod večjim kotom kot direktni. C) Vpliv sipanih žarkov lahko
zmanjšamo, če pred detektor postavimo radiografsko rešetko, ki narejena iz tan‑
kih kovinskih trakov in absorbira žarke, ki se detektorju približajo pod kotom.

Klasična rentgenska slika prikazuje sence oz. projekcije, ki jih na de‑
tektorju naredijo telesne strukture. Zaradi tega na rentgenski sliki ni in‑
formacije o položaju posamezne strukture v telesu. Če potrebujemo 3D
sliko telesa, moramo pacienta slikati iz več različnih strani ter nato iz teh
projekcij izluščiti informacijo o 3D obliki (slika 26.9). Postopek, s katerim
sestavimo 3D strukturo na osnovi njenih projekcij, se imenuje tomografija
in je računsko zelo zahteven, zato dobrih 3D slik ne moremo dobiti brez
pomoči hitrega računalnika. Slikovna tehnika, ki uporablja tomografijo z
rentgenskim slikanjem, se imenuje CT (iz angl. computed tomography) ali
računalniška tomografija. Fizikalni princip nastanka slike pri CT preiskavi je
torej enak kot pri rentgenu, le da pri CT preiskavi pacienta slikamo iz večih
strani ter nato s pomočjo računalnika sestavimo njegovo 3D sliko (26.10).
Pri CT preiskavi tako pacienta z rentgenskimi žarki presvetlimo večkrat,
zato pri njej prejme bistveno večjo dozo ionizirajočega sevanja kot pri kla‑
sičnem rentgenu.
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x
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Slika 26.9: Shematični prikaz slikanja z večih strani. Pri slikanju z ene strani se na
sliki izrišejo le projekcije struktur v smeri slikanja, informacije o položaju struktur
vzdolž smeri slikanja pa ne dobimo. Če predmete v zgornjem primeru slikamo
v smeri x, iz slike ne bomo mogli razbrati, ali je kocka za ali pred piramido. To
informacijo dobimo, če predmete slikamo še v smeri y. V praksi slikamo iz veliko
različnih strani, nato pa uporabimo postopek imenovan tomografija, s katerim iz
posnetih projekcij s pomočjo računalnika izračunamo 3D obliko struktur.
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Slika 26.10: A) Shematični prikaz delovanja naprave CT. Pacient leži na pomični
mizi, rentgenska cev in detektorji pa se vrtijo okrog njega. Na tak način pacienta
slikamo v večih ravninah in z več strani, računalnik pa nato iz zajetih projekcij
sestavi 3D sliko telesa. B) Primer CT slike. CT sliko gledamo na računalniškem
zaslonu, pri čemer lahko sproti izbiramo, kateri prerez telesa želimo videti. Prika‑
zani so en sagitalni (spodaj) in dva aksialna prereza telesa (rdeče črte označujejo
mesto aksialnih prerezov).
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Poglavje 27

Ionizirajoča sevanja

Ionizirajoče je vsako sevanje, ki nosi dovolj energije, da lahko ionizira mo‑
lekule oz. razbije medatomske vezi. Ionizirajoče sevanje zato v celicah
povzroči poškodbe makromolekul in dednega zapisa, kar lahko privede
do celične smrti ali do nastanka raka. Ob previdni uporabi pa lahko io‑
nizirajoče sevanje v medicini izrabimo tudi koristno, npr. v raznih dia‑
gnostičnih metodah (rentgen, scintigrafija, PET ...) in v radioterapiji (slika
27.1). V tem poglavju bomo spoznali osnovne značilnosti interakcije io‑
nizirajočega sevanja s snovjo in njegovega vpliva na tkiva. V naslednjem
poglavju bomo nato spoznali še osnovne značilnosti nuklearne medicine,
ki ionizirajoče sevanje uporablja pri zdravljenju.

linearni
pospeševalnik

tumor

Slika 27.1: Ionizirajoče sevanje poškoduje celice in je lahko smrtno nevarno, zato
moramo izvore ionizirajočega sevanja označiti z ustreznimi označbami. Na levi
je prikazana starejša, na desni pa nova oznaka prisotnosti ionizirajočega sevanja.
Ob previdni uporabi lahko ionizirajoče sevanje koristno izrabimo za različne me‑
dicinske diagnostične in terapevtske postopke. Na sliki je shematsko prikazano
zdravljenje raka z obsevanjem – ionizirajoče sevanje manj škoduje zdravim celi‑
cam kot rakastim, zato lahko slednje z ravno pravšnjo dozo sevanja uničimo, ne
da bi pri tem uničili zdravo tkivo.
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27.1 Vrste ionizirajočega sevanja
Za ionizacijo molekul je potrebno nekaj eV energije, zato pod ionizirajoče
sevanje spadajo vsi žarki, ki imajo vsaj toliko energije. V poglavju o elek‑
tromagnetnem valovanju smo spoznali, da k ionizirajočem elektromagne‑
tnem sevanju prištevamo del ultravijolične svetlobe ter rentgenske žarke
in žarke gama (tabela 24.1 in slika 24.3). Poleg fotonov z visoko energi‑
jo k ionizirajočem sevanju spadajo še različni hitri delci z veliko kinetično
energijo, ki nastajajo pri radioaktivnem razpadu ali pa v pospeševalnikih
delcev. Ionizirajoče sevanje prihaja tudi iz vesolja (to sevanje imenujemo
kozmični žarki), vendar se to sevanje v veliki meri absorbira v atmosferi, za‑
to ga občutimo le v Himalaji ali pri letenju z letalom. Po drugi strani velja
spomniti, da vsako sevanje ni ionizirajoče: sevanje mobitelov in ultrazvok
npr. nista.

Spodaj navajamo kratek pregled najpogostejših vrst ionizirajočega se‑
vanja, ki jih srečamo v medicini, slika 27.2 pa prikazuje, kako različne vrste
sevanja ionizirajo snov skozi katero potujejo. Za vse vrste ionizirajočih del‑
cev velja, da v tkivo prodrejo tem globlje, čim večjo energijo imajo.

Rentgenski žarki in žarki gama so elektromagnetno valovanje. Razlika
med njimi je le v njihovem izvoru in tipičnih energijah: rentgenski
žarki nastajajo v rentgenski cevi in imajo energije do približno 150
keV, gama žarki pa nastajajo pri radioaktivnih razpadih in imajo lah‑
ko energije tudi do nekaj 10 MeV. Pri prehodu skozi snov se visoko‑
energjski fotoni naključno absorbirajo, pri tem pa lahko ustvarjajo
tudi sekundarne ionizirajoče delce (npr. elektrone, ki jih izbijejo iz
atomov), ki snov ionizirajo naprej. Energija, ki jo pustijo v snovi, je
zato le približno eksponentno odvisna od prepotovane poti. V praksi
njihovo absorpcijo v snovi vseeno opišemo enako kot pri absorpcij‑
skem zakonu (enačba 21.6), tj. z razpolovno debelino (x½), v kateri
se absorbira polovica vpadnih žarkov, ali pa z absorpcijskim koefici‑
entom (µ). V vodi je razpolovna debelina fotonov z energijo 150 keV
približno 5 cm, fotonov z energijo 18 MeV pa nekaj več kot 20 cm. V
tkivu je razpolovna debelina še malo manjša kot v vodi.

Delci alfa so hitra jedra helija, ki nastajajo pri radioaktivnem razpadu. Ti‑
pične energije takih delcev so nekaj MeV. Ker so relativno težki in
imajo velik naboj (2+), njihova absorpcija ni le naključen proces, am‑
pak med svojo potjo neprestano interagirajo z atomi v snovi, jih io‑
nizirajo ter tako sproti izgubljajo svojo energijo. Delci alfa se zato v
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Slika 27.2: Prikaz absorbirane energije za tipična ionizirajoča sevanja pri prehaja‑
nju skozi vodo [39]. Energije so prikazane v relativnih enotah. Absorbirana ener‑
gija je neposredno merilo za število ionizacij, ki jih sevanje ustvari na določeni
globini, zato lahko iz prikazanih grafov razberemo, kako globoko v tkivo prodre‑
jo, pa tudi na kateri globini povzročijo največ ionizacij. Pri vseh vrstah sevanja
velja, da v snov prodrejo tem globlje, čim večjo energijo nosijo. Delci alfa (helijeva
jedra) se pri svojih tipičnih energijah povsem absorbirajo že v nekaj deset mikro‑
metrih vode. Doseg elektronov (delcev beta minus) je tipično od pol centimetra
do deset centimetrov (na sliki prikazano z rdečo pikčasto črto). Protoni in ioni, ki
jih ustvarimo v pospeševalniku, imajo lahko zelo veliko energijo in lahko prodrejo
globoko v tkivo. Vsi težkih nabiti delci (alfa, protoni in ioni) povzročijo relativno
največ ionizacij tik preden se ustavijo, zato imajo njihove krivulje na sliki tik pred
koncem oster vrh (v strokovni literaturi ta vrh imenujejo Braggov vrh). Fotoni se
v snovi absorbirajo naključno, zato število ionizacij z razdaljo pada približno ek‑
sponentno (na sliki prikazano z vijolično črtkano črto).

snovi slej ko prej ustavijo in njihovega prodiranja skozi snov ne more‑
mo opisati z eksponentno absorpcijo in razpolovno debelino temveč
kar s povprečnim dosegom. Tipični doseg delcev alfa z energijo ne‑
kaj MeV v tkivu je nekaj 10 mikrometrov in se torej ustavijo že v koži.
Delci alfa največji delež energije izgubijo tik preden se ustavijo.

Hitri protoni in hitri ioni postajajo vse bolj pomembni terapevtski ionizi‑
rajoči žarki, saj jih lahko ustvarimo v pospeševalniku in pri tem kon‑
troliramo njihovo energijo ter s tem njihov doseg, pri čemer so njiho‑
ve energije od nekaj 10 MeV do nekaj 100 MeV. Pri svoji poti skozi
snov se obnašajo podobno kot delci alfa in največji delež energije iz‑
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gubijo tik preden se ustavijo, zato so zelo uporabni za radioterapijo,
saj lahko s primerno izbiro njihove energije nastavimo globino, na ka‑
teri pustijo največ ionizacij, ter s tem poskrbimo, da tumor obsevamo
močneje kot zdravo okoliško tkivo. V Sloveniji naprave za protonsko
oz. ionsko terapijo zaenkrat še nimamo.

Delci beta minus so hitri elektroni. Nastanejo lahko pri radioaktivnem
razpadu, lahko pa jih ustvarimo tudi v pospeševalniku. Ker so nabi‑
ti, tudi oni med potjo skozi snov neprestano izgubljajo energijo in se
v snovi slej ko prej ustavijo. Ker pa so lažji od delcev alfa, se jim ob
interakciji z atomi spreminja smer gibanja, zato meja njihovega dose‑
ga ni tako ostra, kot pri delcih alfa. V vodi je tipični doseg delcev β−

z energijo 1 MeV nekaj mm, z večanjem energije pa se doseg ustrezno
veča.

Delci beta plus so pozitroni (anti‑delci elektronov – imajo enako maso kot
elektroni, a pozitiven naboj). Pozitron na poti skozi tkivo hitro sre‑
ča kak elektron, ki je njegov anti‑delec, zato se z njim anihilira. Pri
anihilaciji se vsa njuna masa spremeni v energijo dveh fotonov ga‑
ma z energijo 511 keV, ki zaradi ohranitve gibalne količine odletita
vsak v svojo smer. Delci β+ se uporabljajo pri pozitronski emisijski
tomografiji (PET), ki jo bomo podrobneje opisali kasneje.

27.2 Vpliv ionizirajočega sevanja na tkivo
Po drugi svetovni vojni so zaradi prve uporabe atomske bombe vložili ve‑
liko naporov in denarja v razumevanje bioloških učinkov ionizirajočega
sevanja. Ti so zato še dobro raziskani, vsekakor mnogo bolj od bioloških
učinkov ostalih škodljivih vplivov okolja, npr. onesnaženosti zraka.

Fizikalno‑kemijski del učinka ionizirajočega sevanja na tkivo je razu‑
mljen najbolje: ionizirajoče sevanje razbija medatomske vezi in povzroča
ionizacije molekul. V tkivu tako nastajajo molekule s prostimi radikali, ki
so zelo reaktivni in lahko kemijsko reagirajo z makromolekulami v okolici
ter jim s tem spremenijo strukturo. Makromolekule v celicah lahko tako
razpadejo neposredno zaradi interakcije z ionizirajočim sevanjem, lahko
pa jih poškodujejo tudi ionizirane molekule vode (slika 27.3). Posreden
učinek je še celo bolj pogost, saj je v celicah največ molekul vode in se zato
največ ionizacij zgodi ravno na vodi.
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neposreden učinek

posreden učinek

Slika 27.3: Shematični prikaz biološkega učinka ionizirajočega sevanja. Makro‑
molekula se lahko poškoduje neposredno, tako da jo sevanje razbije, lahko pa jo
poškodujejo prosti radikali, ki nastanejo ob ionizaciji sosednjih molekul (največ‑
krat so to ionizirane molekule vode). Zelo močne poškodbe makromolekul v celici
vodijo v celično smrt, že nekaj poškodb molekule DNK pa lahko povzroči muta‑
cije in nastanek raka.

Število ionizacij v tkivu je neposredno povezano z energijo, ki mu jo
preda ionizirajoče sevanje. Zelo enostavno merilo škode v tkivu je zato
absorbirana doza, tj. absorbirana energija ionizirajočega sevanja na kilogram
tkiva:

Dabs =
Wabs

m
(27.1)

Enota za absorbirano dozo je grey, 1Gy = 1 J/kg.
Za merjenje biološkega učinka ionizirajočega sevanja so uvedli še ekvi‑

valentno dozo, pri kateri se upošteva, da imajo različne vrste sevanja različen
biološki učinek. Težki nabiti delci (protoni, delci alfa in ioni) v posamezni
celici naredijo več ionizacij kot elektroni in fotoni, zato celicam relativno
bolj škodujejo kot elektroni in fotoni. Ekvivalentno dozo izračunamo tako,
da absorbirano dozo pomnožimo z relativnim biološkim učinkom (RBU )

Dekv = RBU ·Dabs , (27.2)

pri čemer je RBU za fotone in elektrone enak 1, za protone 2, za težje ione
pa od 10 do 20. Enota za ekvivalentno dozo je sievert (Sv).

Biološki vpliv ionizirajočega sevanja je bolj zapleten od fizikalno‑kemijskega,
saj v celici obstajajo različni mehanizmi za popravljanje škode. Če je absor‑
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birana doza velika, škode ni več mogoče popraviti in celica odmre. Smrtna
doza za tkiva je približno nekaj Sv. Za srednje velike doze lahko sklepamo,
da je verjetnost za škodo kar sorazmerna prejeti dozi: večja kot je doza, več
ionizacij se zgodi v tkivu in večja je verjetnost, da bo katera od teh ioniza‑
cij povzročila poškodbo makromolekul oz. mutacijo DNK. Če je po drugi
strani absorbirana doza dovolj majhna, lahko celica z malo sreče škodo v
celoti popravi in živi naprej brez trajnih posledic. Žal pa ne vemo, kako
majhna doza (če sploh) je povsem nenevarna1. Najboljši način za ocenje‑
vanje majhnih doz je, da jih primerjamo z naravnim sevanjem, ki je v naši
okolici vedno prisotno zaradi naravnih radioaktivnih izotopov. Povprečna
doza, ki jo v Sloveniji dobimo z naravnim sevanjem v enem letu, je pribli‑
žno 2,6mSv.

Ker ne vemo, katera doza bi bila pri izpostavljanju ionizirajočem seva‑
nju še povsem varna, v praksi uporabljamo t. i. princip ALARA (As Low
As Reasonably Achievable). Pacientov torej po nepotrebnem ne izposta‑
vljamo sevanju, če pa so koristi preiskave večje od potencialne škode, pre‑
iskavo opravimo tako, da je pacient izpostavljen čim manj. Tipične doze
nekaterih preiskav so navedene v tabeli 27.1. Če ima pacient npr. eno‑
stavni zlom roke, jo lahko seveda brez slabe vesti slikamo in sicer raje z
navadnim rentgenom kot s CTjem.

27.3 Detektorji ionizirajočega sevanja
Ionizirajočega sevanja z našimi čutili ne moremo zaznati (in se ga zato vča‑
sih bojimo še bolj, kot bi bilo upravičeno), zaznamo pa ga lahko s poseb‑
nimi detektorji. V tem razdelku bomo na kratko povzeli glavne vrste de‑
tektorjev, ki jih srečamo v medicini. Vsi detektorji ionizirajočega sevanja
temeljijo na detekciji posledic ionizacij, ki jih v snovi povzroči sevanje (sli‑
ka 27.4).

Zgodovinsko najstarejši detektor ionizirajočega sevanja je fotografski
film s srebrovo soljo, ki ga je za detekcijo rentgenskih žarkov uporabljal že
Roentgen. Ionizacije v filmu povzročijo nastanek srebrovih ionov, ki nato
kemijsko reagirajo s kemikalijami, ki jih uporabimo med razvijanjem in

1Učinkov majhnih doz ne poznamo predvsem zato, ker niso mnogo večji od naravnega
ozadja in jih je zato praktično nemogoče zanesljivo izmeriti. Nekateri raziskovalci so npr.
celo prepričani, da so majhne doze koristne za zdravje, saj smo se jim bili primorani skozi
evolucijo prilagoditi (mutacije so celo potrebni pogoj, da evolucija sploh deluje).
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preiskava ekvivalentna doza [mSv]

rentgen okončine < 0,01

rentgen pljuč 0,02

CT glave 2

CT abdomna 10

scintigrafija ščitnice 1

PET glave 5

naravno sevanje v enem letu ∼ 2,6

Tabela 27.1: Tipične doze ionizirajočega sevanja, ki jih pacient prejme pri nekate‑
rih preiskavah (povzeto po [40]). Pri CT slikanju je pacient rentgenskih žarkom
izpostavljen dlje časa kot pri navadnem rentgenskemu slikanju, zato je tudi prejeta
doza pri CTju bistveno večja. Z navadnim rentgenom bi se morali slikati pribli‑
žno 100 krat, da bi prejeli dozo, ki jo sicer v enem letu prejmemo zaradi naravnega
sevanja naše okolice.

fiksiranjem filma, ter tako na filmu pustijo temno sled (slika 27.4A). Slaba
stran filma je v tem, da razvijanje traja nekaj časa, zato slike ne moremo
videti takoj po slikanju. V digitalni dobi se je fotografski film praktično
že povsem umaknil novejšim metodam, ki omogočajo, da sliko dobimo v
trenutku in v digitalni obliki.

Pri drugem tipu detektorja zaznamo vidne fotone, ki nastanejo kot po‑
sledica ionizacij v snovi (slika 27.4B). Tako deluje fluoroskopija s fluore‑
scenčnim zaslonom, pri kateri lahko rentgensko sliko opazujemo v živo s
prostim očesom (odkar poznamo škodljivost rentgenskih žarkov, fluore‑
scenčnih zaslonov ne gledamo več s prostim očesom, ampak jih snemamo
s kamero in sliko predvajamo operaterju, ki varno sedi v sosednji sobi).
Še precej bolj občutljivi so scintilacijski detektorji, pri katerih sekundarni vi‑
dni fotoni nastanejo v posebnih kristalih, te fotone pa potem zaznamo z
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občutljivimi detektorji svetlobe (t. i. fotopomnoževalkami). Ime so dobili
po latinski besedi scintilla, ki pomeni iskra. Te vrste detektorjev je mogoče
miniaturizirati in povezati neposredno z računalnikom, zato se v slikovni
diagnostiki vse pogosteje uporabljajo.

V tretjo skupino spadajo detektorji, ki zaznajo neposredno elektrone,
ki nastanejo ob ionizaciji. Najbolj znan tak detektor je Geiger‑Müllerjev šte‑
vec , pri katerem zaznavamo ionizacije v plinu, ki se nahaja v komori med
anodo in katodo. Ionizacija v plinu povzroči električni tok med katodo
in anodo, zato jo zaznamo kot sunek električnega toka. Geiger‑Müllerjev
števec je pogosto povezan z zvočnikom, ki izmerjeno količino sevanja pre‑
vede v zvočni signal. V filmih o jedrskih katastrofah ponavadi uporabljajo
prav Geiger‑Müllerjev števec, saj ima njegovo zlovešče prasketanje ob pri‑
sotnosti radioaktivnosti močan dramatični učinek. V zadnjih letih se vse
bolj uveljavljajo tudi polprevodniški detektorji, ki delujejo podobno kot de‑
tektorji svetlobe v digitalnih kamerah.

-e

A B C

fotografski film

fluoroskopija
scin�latorski detektorji

Geigerjeva cev
polprevodniški detektorji

detek�ramo
kemijsko reakcijo

detek�ramo
nastale elektrone

detek�ramo
nastale vidne fotone

Slika 27.4: Shematični prikaz treh glavnih vrst detektorjev ionizirajočega sevanja.
Vse vrste detektorjev temeljijo na zaznavi poledic ionizacij, ki jih v snovi povzroči
ionizirajoče sevanje.
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Poglavje 28

Osnove nuklearne medicine

Pridevnik »nuklearen« oz. »jedrski« je zaradi jedrskega orožja in radioak‑
tivnosti v javnosti precej nepriljubljen. Vendar je radioaktivnost povsem
naraven pojav, ki ga lahko poleg tega s pridom izkoriščamo v jedrskih elek‑
trarnah za pridobivanje elektrike z majhnim ogljičnim odtisom, zelo upora‑
ben pa je tudi v medicini (slika 28.1). Pri uporabi radioaktivnosti moramo
biti seveda pazljivi, da ljudi po nepotrebnem ne izpostavljamo škodljivemu
ionizirajočemu sevanju, ki nastaja ob radioaktivnem jedrskem razpadu. V
tem poglavju bomo najprej opisali radioaktivnost in z njo povezane vrste
sevanja, nato pa še, kako to sevanje izkoriščamo pri diagnostiki in terapiji.

gama
kamera

radiofarmak radiofarmak

A B

Slika 28.1: Shematični prikaz dveh primerov uporabe radioaktivnosti v nuklearni
medicini. Pri obeh pacientu vbrizgamo radioaktivno učinkovino, t. i. radiofarmak,
ki se v telesu veže na točno določeno tkivo. A) Pri nuklearnomedicinskih diagno‑
stičnih metodah radiofarmak oddaja žarke gama, ki jih zaznamo z gama kamero
in tako izbrano tkivo lokaliziramo oz. »slikamo«. B) Pri nuklearni terapiji radio‑
farmak s svojim sevanjem izbrano tkivo uniči.
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28.1 Atomska jedra, izotopi in jedrska energija
Jedra atomov so sestavljena iz osnovnih delcev nukleonov, med katere spa‑
data proton, ki ima pozitivni osnovni električni naboj +e0, in nevtron, ki je
nevtralen, njegova masa pa je podobna masi protona. Čeprav med pro‑
toni deluje odbojna električna sila, pa med obema vrstama nukleonov na
kratkih razdaljah deluje tudi zelo močna privlačna jedrska sila, ki poskrbi,
da se nukleoni držijo skupaj v jedru. Natančen opis jedrske sile ni enosta‑
ven in presega naše matematično znanje, zato si bodo morali radovedneži
enačbe za jedrsko silo poiskati v kakšni knjigi o kvantni mehaniki. Mi bo‑
mo povedali le, da je jedrska sila tako močna, da za iztrganje nukleona iz
stabilnega jedra potrebujemo energijo nekaj MeV, kar je milijonkrat več od
energije, ki je potrebna, da molekulam iztrgamo elektron (spomnimo se,
da je za ionizacijo molekul potrebno le nekaj eV).

V osnovnih stanjih atomov je število elektronov enako številu proto‑
nov, zato število protonov v atomskem jedru definira vrsto atoma, tj. ke‑
mijski element. Število protonov v jedru zato imenujemo vrstno število,
označimo pa ga z Z. Izkaže se, da imajo lahko jedra ene vrste različno
število nevtronov in torej različno maso. Taka jedra oz. atome imenujemo
izotopi izbranega kemijskega elementa. Da lahko različne izotope razliku‑
jemo med seboj, kemijske elemente označujemo tako z njihovim vrstnim
številom, kot tudi s skupnim številom nukleonov. Ker slednje opisuje ma‑
so izotopa, mu pravimo tudi atomsko masno število, označimo pa ga z A.
Po dogovoru izotop elementaX z vrstnim številom Z in masnim številom
A po navadi označimo z

A
ZX .

Večina elementov iz periodnega sistema ima vsaj nekaj izotopov. Obstajajo
npr. trije izotopi vodika: najpogostejši vodik ima v jedru le en proton (11H),
obstajata pa še devterij (21H), ki ima v jedru en proton in en nevtron, ter
tricij (31H), ki ima en proton in dva nevtrona. Vrstno število je nedvoumno
definirano že z oznako elementa, zato ga pri zapisu v praksi včasih kar
izpustimo.

Za nas bo kasneje zelo pomembno dejstvo, da je kemijska aktivnost ne‑
kega elementa v prvi vrsti odvisna od njegovih elektronov, ne pa od števila
nevtronov v jedru. Različni izotopi istega elementa lahko torej tvorijo ena‑
ke kemijske spojine. Možno je npr. narediti vodo iz samih devterijev –
njena molska masa je namesto 18 g/mol enaka 20 g/mol in je zato pribli‑
žno 10 % gostejša od navadne vode (tako vodo imenujemo težka voda in
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jo označimo z D2O, saj devterij označujemo s simbolom D). Težka voda je
kemijsko enaka navadni vodi, razlikuje pa se po vseh lastnostih, ki so po‑
vezane z maso. Ima npr. nižje lastne frekvence nihanja, pa tudi hitrost
kemijskih reakcij v njej je malo drugačna.

Ko so izmerili mase različnih izotopov, so ugotovili, da njihova masa ni
enaka vsoti mas njihovih protonov in nevtronov, temveč je nekoliko manj‑
ša. Paradoks je pomagal razrešiti kdo drug kot Albert Einstein, ki je ugo‑
tovil, da masa ni nespremenljiva količina in je zapisal znamenito formulo
za ekvivalenco mase in energije1:

W = mc2 . (28.1)

Ta formula opisuje, da sta energija in masa le dve strani istega kovanca.
Masa se lahko spremeni v energijo, energija v maso, sorazmernostna kon‑
stanta med njima pa je kvadrat svetlobne hitrosti. Pri majhnih energijah
zgornje povezave ne opazimo, drugače pa je pri velikih energijah, ki jih
srečamo v atomskem jedru. Jedrska vezavna energija je namreč tako ve‑
lika, da se pozna pri skupni masi vezanih protonov in nevtronov v jedru.
Če hočemo jedro devterija razbiti na nevtron in proton, moramo vložiti to‑
liko energije, da se to pozna na končni masi: razdeljena proton in nevtron
imata zato večjo skupno maso, kot jo je imelo na začetku jedro devterija.

Ker mase jeder kemijskih elementov niso enostavne vsote mas proto‑
nov in nevtronov, ki jih sestavljajo, so se kemiki dogovorili, da atomsko
masno enoto definirajo kot 1/12 mase najbolj stabilnega (pogostega) izo‑
topa ogljika 12

6C. V biologiji namesto izraza masna enota uporabljamo tudi
dalton (Da) in velikost makromolekul izražamo v kilodaltonih. Velja

1u = 1Da =
1

12
m(12

6C) ≈ 1,66 · 10−27 kg ≈ 931,5MeV/c2 . (28.2)

V zadnjem izrazu zgornje enačbe smo masno enoto izrazili tudi z energijo
v enoti MeV. Masi protona in nevtrona sta torej malo večji od masne enote:
m(p+) ≈ 1,008u, masa nevtrona pa celo malenkost večja, m(n) ≈ 1,009u.
Iz mase enega protona ali nevtrona bi torej dobili približno 940 MeV ener‑
gije. Masa elektrona je bistveno manjša: m(e−) ≈ 0,00055u, iz česar lahko
izračunamo, da bi iz enega elektrona dobili 511 keV energije.

1V popularni kulturi je formula bolj znana v svojem anglosaškemu zapisu, E = mc2,
saj tam energijo označujejo z E in ne z W .
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Primer 28.1: energija, ki se sprosti pri radioaktivnem razpadu 131I?

Najprej se spomnimo se, da smo uporabo joda srečali tudi pri kontrastnih sredstvih
za rentgensko slikanje, a tam uporabljajo stabilen izotop joda 127

53I, ki ni radioakti‑
ven. Za terapevtsko zdravljenje ščitnice se pogosto uporablja radioaktiven izotop
joda 131

53I, ki se s spontanim jedrskim razpadom spremeni v stabilni izotop ksenona
131
54Xe. Pri tej reakciji se en nevtron v jedru joda spremeni v proton, zato se vrstno

število poveča, masno pa se ne spremeni. Izračunajmo, koliko energije se sprosti
ob tej reakciji!
V Wikipediji lahko najdemo podatka za maso obeh izotopov:

m(131
53I) = 130,9061246u (28.3)

m(131
54Xe) = 130,9050824u (28.4)

Razlika mas ksenona in joda je torej ∆m ≈ 0,001u. Z drugimi besedami, pri pre‑
tvorbi joda 131

53I v ksenon 131
54Xe se v obliki sevanja sprosti približno tisočinka masne

enote energije oz. približno 930 keV, kar je dovolj za ionizacijo velikega števila
molekul!

28.2 Jedrski razpadi in radioaktivnost
Nekateri izotopi so stabilni, drugi pa so nestabilni in spontano razpadajo
oz. se spreminjajo dokler se ne spremenijo v katerega od stabilnih izoto‑
pov. Ogljik ima npr. dva stabilna izotopa (12C in 13C), poleg tega pa kar
13 nestabilnih (od 8C do 22C). Elementi v periodnem sistemu, ki imajo vr‑
stno število večje od svinca (82Pb), so vsi nestabilni. Nestabilnim izotopom
pravimo tudi radioaktivni izotopi, saj ob razpadu oz. spreminjanju višek
energije oddajo s sevanjem visokoenergijskih delcev (alfa, beta in gama),
ki jih prištevamo med ionizirajoče sevanje in smo jih spoznali v prejšnjem
poglavju, še enkrat pa jih povzemamo na sliki 28.2. Praktično vsi naravni
elementi imajo tudi kakšen radioaktiven izotop (primer 28.2).

Primer 28.2: banani ekvivalentna doza
Radioaktivni izotopi so povsem naravni pojav, le da so v naravi relativno redkejši
od stabilnih izotopov. Obstaja npr. več kot 20 izotopov kalija (od 31K do 56K), pri
čemer so v naravi najpogostejši trije: največ kalija je v obliki dveh stabilnih izoto‑
pov 39K (93,258 %) in 41K (6,73 %) ter enega radioaktivnega izotopa 40K (0,012 %).
Razpolovni čas slednjega je več kot milijarda let, zato se njegova količina v naravi
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s stališča življenja človeka praktično ne spreminja. Če torej v trgovini z bio‑hrano
kupimo kalijevo sol (KCl), bo v njej hočeš nočeš tudi nekaj radioaktivnega kalija
40K, zato bo sol radioaktivna. Seveda je to sevanje zelo majhno in težko rečemo,
da škoduje zdravju. V prejšnjem poglavju smo videli, da od naravnega sevanja
dobimo dozo približno 2,6 mSv na leto.
Da bi javnost opozorili na obstoj naravne radioaktivnosti in z njo povezanega se‑
vanja, so fiziki malo za šalo, malo pa zares definirali banani ekvivalentno dozo, to je
dozo, ki jo dobimo, če pojemo povprečno veliko banano. Banane so namreč ma‑
lenkost bolj radioaktivne od povprečne okolice, saj je v njih veliko kalija. Meritve
so pokazale, da je ena banani ekvivalentna doza (BED) enaka 0,1μSv. Če pojemo
200 banan torej dobimo približno enako dozo kot pri enem rentgenskem slikanju
(spomnimo se tabele 27.1).

Radioaktivni razpad je naključen proces, kar pomeni, da za posame‑
zno radioaktivno jedro ne moremo napovedati točno, kdaj bo razpadlo,
poznamo le verjetnost za razpad v določenem času2. Za različne izoto‑
pe je ta verjetnost različna, najlažje pa jo opišemo z razpolovnim časom, tj.
s časom, v katerem je verjetnost za razpad 1/2. Z drugimi besedami: če
imamo veliko število radioaktivnih jeder, jih v razpolovnem času razpade
približno polovica. Gre torej za eksponenten proces (v določenem času se
št. jeder zmanjša za določen faktor), zato lahko odvisnost števila jeder od
časa opišemo z znanima enačbama:

N(t) = N02
−t/t½ = N0e

−λt , (28.5)

pri čemer je N0 začetno število jeder ob času t = 0, t½ pa je razpolovni
čas. Konstanta λ v zapisu z naravno osnovo se imenuje razpadna konstan‑
ta. Zapisa z osnovo 2 in naravno osnovo sta povsem ekvivalentna, zato
lahko uporabimo tistega, ki je v dani situaciji bolj praktičen. Med razpo‑
lovnim časom in razpadno konstanto velja znana zveza λ = ln 2/t½, ki smo
jo izpeljali že v analognem primeru zapisa eksponentne odvisnosti pri ab‑

2Prisotnost naključji v kvantnem svetu je eden od najbolj nenavadnih fenomenov, ki
jih je odkrila sodobna znanost. Še Albert Einstein ni mogel verjeti, da ima Narava v svoje
procese vgrajena naključja, in je verjel, da »bog ne kocka.« Skupaj z nekaterimi kolegi je
bil prepričan, da bi naključni procesi v Naravi lahko privedli do paradoksov kot je npr.
Schroedingerjeva mačka, ki je hkrati živa in mrtva. Kljub temu do danes ni nikomur uspe‑
lo pokazati drugače, zato obnašanja Narave ne znamo razložiti brez naključnih dogodkov
v kvantnem svetu, na katere z zunanjimi dejavniki ne moremo vplivati. Po drugi strani
so nekateri mnenja, da nam lahko ravno kvantna mehanika s svojimi naključji vrne svo‑
bodno voljo, ki smo jo izgubili s Newtonovskim determinizmom.
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Slika 28.2: Shematični prikaz štirih vrst sevanja, ki nastaja pri radioaktivnem raz‑
padu in je pomembno v medicini. Pri vseh jedrskih reakcijah se ohranja celotno
število nukleonov in pa celotni električni naboj. A) Sevanje alfa nastaja pri razpa‑
du zelo velikih jeder, pri čemer iz jedra odleti delec alfa (helijevo jedro). Vrstno
število jedra se zmanjša za 2, masno pa za 4. B) Jedra, ki imajo relativno preveč
nevtronov se spremenijo s t. i. razpadom beta minus. Pri tem razpadu se en nev‑
tron v jedru spremeni v proton, iz jedra pa odleti hitri elektron (delec beta minus).
Vrstno število jedra se poveča za 1. C) Jedra, ki imajo relativno premalo nevtro‑
nov, se spremenijo s t. i. razpadom beta plus. Pri tem razpadu se en proton v jedru
spremeni v nevtron, iz jedra pa odleti pozitron (delec beta plus). Pozitron je anti‑
delec elektrona, to pomeni da ima enako maso kot elektron, a pozitivni električni
naboj. Vrstno število jedra se zmanjša za 1. Ob razpadih beta iz jedra odletita tudi
osnovna delca anti‑nevtrino oz. nevtrino, ki pa v medicini nista pomembna. D)
Pri jedrskih reakcijah včasih nastanejo jedra, ki so v vzbujenem stanju (vzbujeno
– metastabilno – stanje označimo z m ob masnem številu). Ko se taka jedra rela‑
ksirajo v osnovno stanje, višek energije oddajo v obliki fotona sevanja gama.

sorpcijskem zakonu (primer 1.6).
Pomembna informacija o radioaktivnih vzorcih je njihova aktivnost, ki

opisuje, kako močno sevajo. Sevanje izvira iz jedrskih razpadov, zato lahko
aktivnost vzorca definiramo kar kot število razpadov, ki se v njem zgodijo
vsako sekundo. Uganemo lahko, da je aktivnost vzorca tem večja, čim več
radioaktivnih jeder vzorec vsebuje in čim hitreje ta jedra razpadajo (čim
krajši je razpolovni čas oz. čim večja je razpadna konstanta). Izračunamo
jo lahko s pomočjo ugotovitve, da se v določenem času število radioaktiv‑
nih jeder v vzorcu zmanjša ravno za število razpadov v vzorcu. Aktivnost
lahko torej izračunamo kot negativno vrednost odvoda števila jeder v vzor‑
cu po času (za odvajanje bomo uporabili zapis z naravno osnovo iz enačbe
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28.5):

A = −dN
dt

= λN0e
−λt , (28.6)

oziroma

A(t) = λN(t) . (28.7)

Aktivnost vzorca je torej kar enaka produktu razpadne konstante in števila
radioaktivnih jeder v njem. Enota SI za aktivnost je becquerel oz. razpad
na sekundo, 1Bq = 1/s. V starejši literaturi se uporablja tudi enota curie
(Ci), ki je bila definirana glede na aktivnost 1 mg čistega radija 226Ra; velja
1Ci = 3,7 ·1010 Bq. Uporaba računanja z razpolovnim časom in aktivnostjo
v praksi je prikazana v primeru 28.3.

Primer 28.3: računanje aktivnosti pri terapiji z 131I

Poglejmo si uporabo pojmov aktivnost in razpolovni čas pri terapiji z radioaktiv‑
nim jodom. Že v primeru 28.1 smo videli, da bolno ščitnico včasih najlažje odstra‑
nimo z radioaktivnim jodom 131I. Postopek poteka tako, da pacient zaužije radio‑
aktivni jod, ki se nato nabere v ščitnici in jo s svojim sevanjem uniči. Po posegu se
mora pacient še nekaj časa izogibati tesnejšim stikom z drugimi ljudmi (še posebej
z otroki in nosečnicami), saj bi bili lahko le‑ti po nepotrebnem obsevani. Če seva
preveč, mora ostati v karanteni toliko časa, da aktivnost joda v telesu pade pod
zahtevano vrednost (količina joda v telesu se zmanjšuje zaradi njegovega razpa‑
danja in izločanja iz telesa). Razpolovni čas za 131I je približno 8 dni.
Za začetek izračunajmo, koliko gramov radioaktivnega joda mora zaužiti pacient,
če mora biti aktivnost zaužitega joda 3 GBq?
Spomnimo se zveze med aktivnostjo, razpadno konstanto in številom radioak‑
tivnih jeder v vzorcu (enačba 28.7). Razpadno konstanto lahko izračunamo iz
razpolovnega časa (N0 = A0/λ = A0t½/ ln 2), število jeder in njihova mase pa
sta povezana preko molske mase, ki jo razberemo iz atomskega masnega števila,
M(131I) = 131 g/mol. Maso joda z zahtevano aktivnostjo lahko torej izračunamo
kot

m = Mn = M
N0

NA
=

MA0

NAλ
=

MA0t½
NA ln 2

= (28.8)

=
131g
mol

· 3 · 10
9

s
· 8 · 24 · 3600 s ·mol

6,02 · 1023 · ln 2
= 0,65μg (28.9)

Pri tem smo morali razpolovni čas izraziti v sekundah, da se je enota ustrezno
pokrajšala.
Sedaj izračunajmo še, koliko časa moramo počakati, da aktivnost zaužitega joda
pade na 300 MBq.
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Če povežemo enačbi 28.5 in 28.7, lahko razberemo, da tudi aktivnost pada ekspo‑
nentno s časom, enako kot št. radioaktivnih jeder:

A(t) = A02
−t/t½ .

Izračunati moramo torej čas, v katerem bo aktivnost le še desetina začetne:

0,1A0 = A02
−t/t½ ⇒ ln 0,1 = −t/t½ ln 2⇒ t =

− ln 0,1

ln 2
t½ ≈ 3,3t½ ≈ 27d

Aktivnost bo torej za faktor 10 padla po nekaj več kot treh razpolovnih časih oz.
po približno enem mesecu. Če bi hoteli, da aktivnost pade za faktor 1000 bi morali
tako počakati kar tri mesece. V praksi se na srečo količina radioaktivnega joda v
telesu ne zmanjšuje le zaradi radioaktivnega razpada, ampak tudi zaradi izločanja
iz telesa, zato pada hitreje od zgornje ocene. Poleg tega je količina zaužitega joda
pogosto tako majhna, da lahko pacient bolnišnico zapusti kmalu po terapiji, ne da
bi s tem predstavljal večjo nevarnost za okolje (gre torej za ambulantni poseg). Po
drugi strani se mora pacient zavedati, da bodo njegov pot, urin in blato še nekaj
časa po posegu radioaktivni.

28.3 Uporaba radioaktivnosti v
terapiji in slikovni diagnostiki

Slikovne tehnike, kot so rentgen, CT, MR in ultrazvok, so odlične za vizua‑
lizacijo anatomskih podrobnosti v telesu, vendar pa je nekatere bolezenske
spremembe tkiv z njimi težje zaznati in oceniti. Tu medicini na pomoč
priskoči nuklearnomedicinska slikovna diagnostika, s katero lahko vizua‑
liziramo tudi nekatere funkcijske oz. fiziološke spremembe v telesu, ki jih
s klasični anatomskih slikanjem težko zaznamo. Osnovni princip nuklear‑
nomedicinskih diagnostičnih metod je bil prikazan na sliki 28.1A: v paci‑
enta vbrizgamo radioaktivno učinkovino, ki se tarčno veže na le določeno
mesto, npr. na tkivo z bolezenskimi znaki ali fiziološkimi spremembami.
Taki učinkovini pravimo tudi radiofarmak. Radiofarmaki, ki se uporabljajo
v diagnostiki, oddajajo žarke gama, ki jih zaznamo s kamero gama in tako
določimo mesto iskanega tkiva v telesu in njegovo obliko. Kamera gama
je zelo občutljiva, zato lahko uporabno sliko dobimo že z majhno količino
radiofarmaka. Prejeta doza ionizirajočega sevanja ob taki preiskavi je tako
primerljiva z dozo, prejeto pri CT slikanju.

Radiofarmak je spojina, ki se tarčno veže na izbrano tkivo (npr. protite‑
lo, ki se veže na maligno rakasto tvorbo) in pri kateri so nekateri normalno
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stabilni atomi nadomeščeni z ustreznimi radioaktivnimi izotopi. Ker se
radioaktivni izotopi s kemijskega stališča obnašajo enako kot stabilni, se
tudi radiofarmak v telesu obnaša enako kot naravna spojina. Če npr. v
pacienta vbrizgamo radioaktivni analog glukoze, se bo ta v telesu nabrala
na področjih s povečanim privzemom glukoze, kar je pogosto povezano
s povečanim metabolizmom. Radiofarmake izdelujejo v posebnih labora‑
torijih, kjer radioaktivne izotope ustvarijo s pomočjo pospeševalnikov in
jedrskih reakcij.

Radiofarmaki, ki jih uporabljamo v diagnostiki, morajo imeti dve ključ‑
ni lastnosti:

• Radiofarmaki za diagnostiko morajo oddajati žarke gama ali delce
beta plus, ne pa žarkov alfa ali beta minus. Prodornost slednjih je
namreč premajhna, da bi lahko prišli iz telesa, zato bi pacientu le
škodovali, diagnostične vrednosti pa ne bi imeli. Kot bomo videli
kasneje, se delci beta plus v tkivu hitro anihilirajo in pri tem tudi
oddajo žarke gama.

• Radiofarmaki se v pacientu ne smejo zadržati predolgo, saj si ne že‑
limo, da bi pacient še dolgo po preiskavi seval žarke gama in s tem
škodoval sebi in svoji okolici. Zato moramo uporabljati izotope s pri‑
merno kratkim razpolovnim časom in jih vgraditi v učinkovine, ki se
hitro izločajo iz telesa.

Osnovno metodo nuklearnomedicinske slikovne diagnostike smo ome‑
nili že v uvodu (slika 28.1A). Metoda se strokovno imenuje scintigrafija,
saj delovanje kamere gama temelji na scintilacijskih detektorjih, ki smo jih
omenili v prejšnjem poglavju (slika 27.4). Z osnovno scintigrafijo dobimo
2D sliko telesa (slika 28.3A), če pa potrebujemo 3D sliko telesa, moramo
– podobno kot pri CT – preiskovanca slikati z več strani in nato 3D sliko
sestaviti s pomočjo računalnika. V nuklearni medicini se taka metoda ime‑
nuje SPECT (single‑photon emission computed tomography). Eden naj‑
pogosteje uporabljenih izotopov za scintigrafijo je tehnecij 99mTc, ki oddaja
žarke gama z energijo 140 keV, njegov razpolovni čas pa je le 6 ur. Črka m
v 99mTc označuje, da gre za vzbujeni (meta‑stabilni) tehnecij, ki se v stabilni
99Tc relaksira z oddajo fotona gama (slika 28.2D).

Posebna podvrsta scintigrafije je pozitronska emisijska tomografija (PET).
Pri njej pacientu vbrizgamo radiofarmak, ki oddaja delce beta plus – po‑
zitrone. Pozitron v tkivu hitro trči v svoj anti‑delec elektron in se z njim
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Slika 28.3: Primera nuklearnomedicinske slikovne diagnostike. A) Primer scinti‑
grafije skeleta z radiofarmakom 99mTc‑HMDP (hidroksimetilen‑difosfonat), ki se
preferenčno veže na lezije, kjer poteka aktivno pregrajevanje kostnine (t. i. osteo‑
blastna aktivnost), in jih v tem primeru povzročajo metastaze kolorektalnega kar‑
cinoma [41]. Na levi strani je slika posneta pred kemoterapijo, na desni pa po
njej. Na desni sliki so vidne zmanjšane metastaze na rebrih. B) Primer kombinira‑
ne preiskave PET in CT pri diagnozi paraganglioma [42]. CT poda sliko z dobro
anatomsko resolucijo, PET pa informacijo, kje se kopiči biološko aktivni radiofar‑
mak (v primeru na sliki je to 18F‑fluoredeoksiglukoza, ki se nabira na mestih s
povečanim privzemom glukoze).

anihilira, pri čemer se masi elektrona in pozitrona spremenita v čisto ener‑
gijo v obliki dveh fotonov gama z energijo 511 keV (slika 28.4A). Nastala
fotona gama zaradi ohranitve gibalne količine odletita v nasprotnih sme‑
reh. Pri PET so detektorji razporejeni v krogu okoli pacienta in detektirajo
pare žarkov gama, tako da lahko mesto izvora sevanja v telesu natančno
določimo (slika 28.4B). Radioaktivni izotopi za PET morajo oddajati beta
plus delce. V medicini se najpogosteje uporabljata izotop fluora 18F z raz‑
polovnim časom 110 minut in izotop galija 68Ga z razpolovnim časom 68
minut. Fluor se vgradi v fluorodeoksiglukozo, ki v telesu označi mesta
s povečanim privzemom in porabo glukoze, galij pa za označevanje raz‑
ličnih peptidih molekul, ki se vežejo na nevroendokrine tumorje, ki jih z
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drugimi metodami težko diagnosticiramo.

 e  e+ −

γ (511 keV)

γ (511 keV)

A B

Slika 28.4: Shematični prikaz delovanja pozitronske emisijske tomografije (PET).
A) Pri tej metodi uporabljamo radiofarmake, ki razpadajo z beta plus razpadom
in torej oddajajo pozitrone. Oddani pozitron (e+) bo v tkivu hitro srečal elektron
(e−), ki je njegov anti‑delec, zato se bo z njim anihiliral. Pri anihilaciji se vsa masa
elektrona in pozitrona spremeni v par fotonov gama z energijo 511 keV, ki zaradi
ohranitve gibalne količine odletita v nasprotnih smereh. B) V napravi za PET so
detektorji za fotone gama nameščeni v krogu okoli pacienta. Vsako anihilacijo
tako zaznamo z dvema detektorjema hkrati, pri čemer vemo, da je bil izvor nekje
na veznici med njima. V tarčnem tkivu nastaja veliko parov fotonov gama, ki letijo
v vse smeri, zato lahko s pomočjo veznic med pari hkratno vzbujenih detektorjev
določimo mesto izvora. Novejše naprave imajo vgrajeno tudi t. i. TOF tehnologijo
(time‑of‑flight), s katero lahko izjemno natančno določijo razliko v času detekcije
fotonskega para in s tem še dodatno izboljšajo lokalizacijo.

Metode nuklearnomedicinske slikovne diagnostike pogosto kombini‑
ramo tudi s CT z nizko sevalno obremenitvijo, saj na ta način dobimo dvoj‑
no informacijo: CT nam da dobro anatomsko sliko telesa, SPECT ali PET
pa še informacijo o biološki aktivnosti v telesu (slika 28.3B).

Za konec nekaj besed namenimo še terapiji z ionizirajočim sevanjem, ki
je bila shematično predstavljena na sliki 28.1B. Pri radio‑diagnostičnih me‑
todah poskušamo celicam v telesu škodovati čim manj, pri radio‑terapevtskih
metodah pa je ravno obratno, saj pri njih želimo s pomočjo ionizirajočega
sevanja uničiti določeno tkivo, npr. rakasto tkivo ali pa bolno ščitnico pri
hipertirozi (premočnem delovanju ščitnice). Terapevtski radiofarmaki se
morajo zato preferenčno vezati na bolno tkivo in običajno oddajajo sevanje
beta minus z dovolj majhno energijo. Tako sevanje namreč prodre le ne‑
kaj mm daleč, zato uniči le tkivo v neposredni bližini, oddaljenemu tkivu
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pa ne škoduje. Za radionuklidno zdravljenje hipertiroze in raka ščitnice
se npr. pogosto uporablja 131I (primer 28.3), ki pri razpadu večino energije
odda v obliki beta minus delcev z energijo 0,6 MeV (pri drugih posegih se
uporabljata tudi 177Lu z energijo 0,5 MeV in 90Y z energjo 2 MeV). V pa‑
cienta lahko radioaktivno snov vgradimo tudi kirurško, takšna metoda se
imenuje brahiterapija. Bolno tkivo lahko seveda obsevamo tudi od zunaj,
pri čemer uporabljamo zunanje izvore ionizirajočega sevanja, npr. linear‑
ne pospeševalnike (slika 27.1).
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Poglavje 29

Slikanje z magnetno resonanco

Slikanje z magnetno resonanco1 (MR) je poleg ultrazvoka, rentgena in raču‑
nalniške tomografije (CT) najbolj razširjena slikovna diagnostična metoda.
Podobno kot CT tudi slikanje z MR ustvari 3D sliko struktur v telesu (sli‑
ka 29.1), prednost MR pa je predvsem v tem, da dobi dober kontrast tudi
med številnimi mehkimi tkivi in pa da preiskovanca ne izpostavi ionizira‑
jočemu sevanju. Pomanjkljivosti metode sta njena relativno visoka cena in
dolg čas slikanja, med katerim mora preiskovanec mirovati v MR napravi.
Na srečo se z napredkom tehnologije ti dve slabosti izboljšujeta, zato lahko
pričakujemo, da bo slikanje z MR v prihodnosti vedno bolj dostopno.

Slika 29.1: Primer magnetno‑
resonančne slike glave. Na
MR slikah je dober kontrast
tudi med različnimi mehki‑
mi tkivi, npr. med različni‑
mi deli možganov. Slikanje
z MR ustvari 3D sliko telesa
(podobno kot CT), ki si jo lah‑
ko nato v različnih prerezih
ogledamo na računalniku.

RHP RHPRHP LFA LFALFA

V tem poglavju bomo opisali osnovni princip slikanja z MR in ob tem
spoznali, da je mehanizem nastanka MR slike popolnoma drugačen kot pri

1Magnetno resonanco so na začetku imenovali jedrska oz. nuklearna magnetna resonanca
(NMR), vendar so pridevnik »jedrska« in »nuklearna« kasneje začeli opuščati, saj ima v
javnosti ta pridevnik negativen prizvok.
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rentgenu, ultrazvoku in nuklearno‑medicinskih metodah.

29.1 Osnovni princip slikanja z MR
Slikanje z magnetno resonanco temelji na dejstvu, da imajo jedra nekaterih
atomov magnetni dipol, ki je tesno povezan z njihovo kvantno lastnostjo
spinom. Jedra so torej majhni trajni magnetki oz. nekakšni majhni kvantni
kompasi. Poglobljeno razumevanje delovanja magnetne resonance zahte‑
va znanje kvantne mehanike in presega naše okvire, zato si bomo za ra‑
zumevanje osnovnega principa slikanja z magnetno resonanco pomagali z
dvema analogijama. Prva bo analogija med jedrskim dipolom in iglo kom‑
pasa, druga analogija pa med jedrskim dipolom in elektronom v atomu, ki
je nam najbolj poznani kvantni objekt.

Ko jedrske magnetne dipole postavimo v zunanje magnetno polje, se
obnašajo kot majhni kompasi in se v ravnovesju v povprečju orientirajo v
smer polja. Podobno kot lahko iglo kompasa v Zemljinem magnetnem po‑
lju z silo odklonimo iz ravnovesne lege, lahko iz ravnovesja vzbudimo tudi
jedrske magnetne dipole. Kot pa je navada v kvantnem svetu (spomnimo
se vzbujanja elektronov v atomih), lahko jedrske magnetne dipole v vzbu‑
jeno stanje vzbudimo le s fotoni z natančno določeno energijo tj. z elek‑
tromagnetnim valovanjem z natančno določeno frekvenco. To frekvenco
imenujemo resonančna frekvenca in po njej je metoda tudi dobila svoje ime
(v literaturi se resonančna frekvenca imenuje tudi Larmorjeva frekvenca). Iz‑
kaže se, da je resonančna frekvenca za jedrske magnetne dipole odvisna od
gostote magnetnega polja po naslednji enačbi:

ν =
γB0

2π
, (29.1)

kjer je B0 gostota magnetnega polja, v katerem se nahaja jedro, γ pa je t. i.
giromagnetno razmerje, ki opisuje, kako močan magnetni dipol je jedro.

Za slikanje z MR uporabljamo jedra vodika, saj so ta jedra med vse‑
mi najmočnejši magnetni dipoli, hkrati pa so v naših telesih tudi najbolj
številčna. V primeru 29.1 pokažemo, da so resonančne frekvence vodiko‑
vih jeder pri MR enake frekvencam radijskih valov. Fotoni radijskih va‑
lov imajo energijo, ki je daleč nižja od energije, ki je potrebna za ionizacijo
(spomnimo se tabele 24.1 v poglavju o elektromagnetnem valovanju). Pre‑
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iskovanec med slikanjem z MR torej ni izpostavljen ionizirajočem sevanju.

Primer 29.1: MR preiskovanca ne izpostavi ionizirajočemu sevanju

Med slikanjem z MR je preiskovanec izpostavljen elektromagnetnemu sevanju, ki
ima resonančno frekvenco jedrskih magnetnih dipolov. Izračunajmo to frekvenco
za vodikova jedra in ocenimo, ali gre v tem primeru za ionizirajoče sevanje!
Iz enačbe 29.1 vidimo, da je resonančna frekvenca jedrskih magnetnih dipolov od‑
visna od njihovega giromagnetnega razmerja (γ), ki pove, kako močni magnetki
so jedra, ter od gostote magnetnega polja, v katerem se nahajajo. Spodnja tabela
prikazuje giromagnetna razmerja za jedra, ki se v magnetoresonančnih tehnikah
najpogosteje uporabljajo:

jedro 1H 31P 23Na

γ [MHz/T] 267,5 108,3 70,7

Tipična gostota magnetnega polja v napravah za slikanje z magnetno resonanco
je od 1T do 3T (v najnovejših napravah pa še nekaj več), kar je približno 50.000
krat več od gostote magnetnega polja zemlje. Frekvenco izračunajmo za vodiko‑
va jedra, ki so v magnetnem polju z gostoto 2,097527T. Iz enačbe za Larmorjevo
frekvenco (enačba 29.1) sledi:

ν =
γB0

2π
=

267,5MHz · 2,097527T
T · 2π

= 89,3MHz ,

kar je, zanimivo, ravno enako frekvenci Radia Študent v Ljubljani! Slikanje z MR
ni torej nič bolj nevarno od poslušanja Radia Študent.

Če iglo kompasa iz ravnovesne smeri odmaknemo in izpustimo (in ta‑
ko iglo »vzbudimo«), bo igla zanihala, njeno nihanje pa bo s časoma za‑
mrlo (se »relaksiralo«) in igla bo spet dosegla ravnovesje ter kazala proti
severu. Podobno je z magnetnimi dipoli jeder – po vzbujanju z zunanji‑
mi radijskimi valovi se bodo jedrski magnetni dipoli relaksirali nazaj proti
ravnovesju, pri tem pa bodo tudi sami oddajali radijske valove z resonanč‑
no frekvenco. Relaksacija magnetnih dipolov pa je malo drugačna od rela‑
ksacije elektronskih stanj v atomih, ki se lahko relaksirajo spontano, brez
sodelovanja atomov v bližini (spomnimo se fluorescence, pri kateri rela‑
ksacija poteče praktično v trenutku). Relaksacija magnetnih dipolov jeder
lahko traja tudi do nekaj 100 ms, poleg tega pa je relaksacija enega jedra ze‑
lo odvisna od interakcije z drugimi jedrskimi magnetnimi dipoli v bližini.
Relaksacija jeder v nekem tkivu je zato zelo odvisna od njegove kemijske
sestave in, kot bomo videli v naslednjem razdelku, je ravno to ključna la‑
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stnost magnetne resonance, ki nam omogoča razlikovanje med različnimi
tkivi.

Sedaj imamo dovolj informacij, da lahko opišemo osnovni princip sli‑
kanja z magnetno resonanco (slika 29.2). V napravi za slikanje z magne‑
tno resonanco je močno magnetno polje, ki ga ustvarimo s pomočjo velike
tuljave (spomnimo se primera 20.2). Ko preiskovanca postavimo v to ma‑
gnetno polje, se magnetni dipoli jeder v povprečju obrnejo v njegovo smer
(slika 29.2B). Nato s pomočjo radiofrekvenčnih valov jedra vzbudimo (sli‑
ka 29.2C). Ko se jedra relaksirajo in vračajo nazaj v ravnovesje, tudi sama
oddajajo radijske valove z resonančno frekvenco. Obnašanje jeder med re‑
laksacijo je odvisno od sestave tkiva, kar nam pomaga, da na osnovi radij‑
skih valov, ki prihajajo iz tkiv rekonstruiramo sliko organov v notranjosti
telesa (slika 29.2D). Več o tem bomo spoznali v naslednjih dveh razdelkih.

A CB D

RF RF

B₀ B₀ B₀

Slika 29.2: Shematični prikaz postopka slikanja z magnetno resonanco. A) Jedra
vodikovih atomov imajo magnetne dipole, ki so v odsotnosti zunanjega magne‑
tnega polja orientirani naključno. B) Ko preiskovanca postavimo v močno magne‑
tno polje, se magnetni dipoli jeder v povprečju usmerijo proti smeri zunanjega
polja. C) Vzbujanje. Z radijskimi valovi (RF ‑ radijska frekvenca), ki imajo reso‑
nančno frekvenco, jedra vzbudimo v vzbujeno stanje. D) Relaksacija. Jedra se iz
vzbujenega stanja relaksirajo nazaj proti ravnovesju in pri tem oddajajo radijske
valove z resonančno frekvenco. Na osnovi teh signalov lahko sestavimo sliko te‑
lesa.

29.2 Relaksacijski časi in
nastanek kontrasta med tkivi

Magnetno resonančna slika nastane na osnovi radijskih valov, ki jih med
relaksacijo oddajajo vodikova jedra v tkivih. Signal iz tkiva je v splošnem
odvisen od gostote vodika v njem (večja kot je gostota, močnejši je signal),

367



Medicinska biofizika (oktober 2023)

hkrati pa na njegovo jakost vpliva tudi hitrost relaksacije. Poleg tega lahko
signal iz tkiva detektiramo le, če ga sinhrono (v fazi) oddaja zelo veliko
število sosednjih jeder, saj je signal iz enega samega jedra prešibak.

Natančnejša analiza, ki presega okvire tega učbenika, razkrije, da gre
pri relaksaciji jedrskih magnetnih dipolov pravzaprav za dva eksponen‑
tna procesa. Prvi proces je preprosto vračanje sistema proti ravnovesju,
pri čemer jedra oddajajo v okolico energijo, ki so jo prejela z vzbujanjem.
Značilni čas te relaksacije imenujemo spinsko‑mrežni relaksacijski čas in ga
označimo s T1. Drugi proces, zaradi katerega se tudi zmanjšuje signal iz
jeder, je povezan z njihovo medsebojno interakcijo, zaradi katere signali iz
sosednjih jeder izgubijo medsebojno sinhronost. Značilni čas tega procesa
imenujemo spinsko‑spinski relaksacijski čas in ga označimo s T2. Ponavadi
se sinhronost sosednjih jeder izgubi hitreje, kot se sistem vrne v ravnoves‑
je, zato je T2 krajši od T1. Različna tkiva imajo različno kemijsko sestavo,
zato imajo vodikova jedra v njih različno soseščino, kar privede to tega, da
se hitrost relaksacije med različnimi vrstami tkiva razlikuje. Tipični rela‑
ksacijski časi T2 so od nekaj 10 ms do 100 ms, relaksacijski časi pa T1 pa od
nekaj 100 ms do 1000 ms (tabela 29.1).

tkivo T2 [ms] T1 [ms]

siva možganovina 101 921

bela možganovina 92 787

možganska tekočina 1500 3000

jetra 43 493

Tabela 29.1: Relaksacijski časi v nekaterih tkivih pri gostoti magnetnega polja 1,5
T [28].

Tkiva se torej med seboj razlikujejo po gostoti vodika in po hitrosti re‑
laksacije jedrskih dipolov po vzbujanju. Spretni radiologi znajo z uporabo
različnih tehnik slikanja izkoristiti katero koli od teh razlik med tkivi (ali
pa vse hkrati), tako da na sliki med različnimi tkivi dobijo dober kontrast.
Mi si bomo pobližje pogledali le eno od najosnovnejših tehnik, ki jo imenu‑
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jemo slikanje s spinskim odmevom (angl. spin‑echo). Ta tehnika izrablja
razlike v spinsko‑spinskih relaksacijskih časih T2.

Signal, ki ga po vzbujanju oddajajo jedra, lahko zaznamo le, če ga je‑
dra oddajajo sinhrono (v fazi). Pri tehniki slikanja s spinskim odmevom
hkrati vzbudimo vsa jedra v telesu, nato pa po kratkem časovnem zami‑
ku zabeležimo radiofrekvenčne »odmeve« iz telesa. Zaradi interakcij med
sosednjimi jedri se bo med relaksacijo izgubljala njihova sinhronost, zato
bo jakost odmeva iz tkiva pojemala eksponentno s časom, pri čemer bo
značilni čas tega pojemanja enak spinsko‑spinskem relaksacijskem času:

ISE ∝ e−TSE/T2 , (29.2)

kjer je ISE jakost zaznanega odmeva iz določenega tkiva (SE označuje spin‑
echo), TSE je čas po vzbujanju, pri katerem detektiramo odmev, T2 pa je
spinsko‑spinski relaksacijski čas v tem tkivu. Ker se tkiva relaksirajo raz‑
lično hitro, bo tudi jakost zaznanega odmeva iz različnih tkiv različna – na
sliki bodo bolj svetla tista tkiva, ki so bila ob času detekcije odmeva bolj
vzbujena (slika 29.3). Za dober kontrast med dvemi tkivi moramo zato od‑
mev iz telesa zabeležiti ob ravno pravem času in sicer takem, da bo eno
tkivo že zrelaksirano, drugo pa še ne in bo prvo na sliki temno, drugo pa
svetlo.

Če bi po vzbujanju odmeve zabeležili prehitro, bi bila vsa tkiva na sliki
svetla, saj bi vsa še zelo vzbujena in bi zato oddala močan odmev. Če bi po
drugi strani odmeve zabeležili prepozno, bi bila vsa tkiva na sliki temna,
saj bi bila jedra v vseh tkivih že zrelaksirana in iz njih sploh ne bi dobili
nobenega odmeva. Kontrast na sliki bi bil v obeh primerih slab. Pokazati
je mogoče, da najboljši kontrast dobimo, če slikamo ob času, ki je na sredini
med T2 enega in T2 drugega tkiva.

S tehniko slikanja s spinskim odmevom lahko torej dobimo dober kon‑
trast le med tkivi, katerih T2 se zelo razlikuje. Če imata dve tkivi zelo po‑
doben T2, ju s to tehniko ne moremo dobro razlikovati. V takem primeru
moramo uporabiti katero od drugih tehnik slikanja z MR, ki pa jih tu ne
bomo imeli časa opisati.
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Slika 29.3: Shematični prikaz nastanka kontrasta med različnimi tkivi pri tehniki
slikanja s spinskim odmevom. Zaradi različnega kemijskega okolja se jedra v raz‑
ličnih tkivih po vzbujanju relaksirajo različno hitro (slika prikazuje hipotetični pri‑
mer, ko se jedra v tumorju relaksirajo počasneje kot v zdravem tkivu, za tumor je
T2 = 300ms, za zdrav tkivo pa T2 = 100ms). Intenziteta na magnetno‑resonančni
sliki je sorazmerna intenziteti radijskih valov, ki ji zaznamo iz posameznega tki‑
va. Za dober kontrast moramo signale zabeležiti v ravno pravem trenutku, da bo
eno tkivo še vzbujeno in zato na sliki belo, drugo pa že zrelaksirano in zato na
sliki temno. Če jih zabeležimo prekmalu, bodo vsa tkiva še zelo vzbujena in zato
na sliki enako svetla, če pa jih zabeležimo prepozno, bodo vsa tkiva že povsem
zrelaksirana in zato na sliki enako temna.

29.3 Gradient magnetnega polja in
nastanek prostorske slike telesa

V prejšnjem razdelku smo spoznali, kako lahko razlikujemo radijske signa‑
le iz različnih tkiv in tako med tkivi na sliki dobimo dober kontrast. Nič pa
še nismo povedali, kako ugotovimo, kje v telesu se določeno tkivo nahaja.
Ker tkiva zaznamo na osnovi radijskih valov, katerih valovne dolžine so
dolge več metrov (tabela 24.1), zaradi velikega uklona ne moremo ugoto‑
viti, iz katere točke v telesu je prišel določen radijski val. Za rekonstrukcijo
prostorske slike tkiv v telesu moramo zato uporabiti zanimiv trik.

Spomnimo se, da tkiva oddajajo radijske valove, katerih frekvenca je
enaka resonančni frekvenci magnetnih dipolov jeder, le‑ta pa je sorazmer‑
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na gostoti magnetnega polja, v katerem se nahajajo (enačba 29.1). Poglejmo
si, kaj se zgodi, če telo postavimo v magnetno polje, katerega gostota line‑
arno narašča v smeri x, tj. če vklopimo gradient magnetnega polja (slika 29.4).
V tem primeru bodo tkiva, ki so v manjšem polju, oddajala radijske valove
z nižjimi frekvencami kot tkiva, ki so v močnejšem polju. Če ob detekciji
signala iz telesa izmerimo tudi njegovo frekvenco, lahko iz nje ugotovimo,
iz katere koordinate x je prišel kateri signal ‑ informacija o položaju izvora
radijskega vala je shranjena v njegovi frekvenci! Če torej določimo spek‑
ter signala, ki ga jedra oddajajo med relaksacijo, lahko v njem razpoznamo
tudi prostorsko sliko.

Za rekonstrukcijo lepe prostorske slike zadostuje že majhen gradient
magnetnega polja, npr., da se od ene do druge strani telesa gostota ma‑
gnetnega polja spremeni le za približno 1 % osnovnega polja. V napravi za
slikanje z MR gradient magnetnega polja ustvarimo z dodatnimi manjši‑
mi tuljavami (imenujemo jih gradientne tuljave), s katerimi lahko gradient
usmerimo v poljubni smeri. Z vključenim gradientom v eni smeri dobi‑
mo informacije o položaju le v tisti smeri, tj. projekcijo slike v tisti smeri.
Podobno kot pri CT moramo zato tudi pri MR preiskovanca slikati zapo‑
redoma z gradienti v različnih smereh in nato iz teh projekcij s pomočjo
računalnika sestaviti 3D sliko telesa (slika 29.5).

Ob koncu se moramo vprašati, ali slikanje z MR škoduje preiskovancu.
Videli smo že, da preiskovanec med slikanjem z MR ni izpostavljen ioni‑
zirajočem sevanju in s tem povezanim tveganjem za razvoj raka. Vseeno
pa je preiskovanec izpostavljen zelo velikemu magnetnemu polju. Pri sli‑
kanju z MR moramo zato paziti, da preiskovanec na sebi ali v sebi nima
snovi, ki se v polju namagnetijo, npr. železa, saj bi na take snovi delovale
ogromne sile oz. navori in bi lahko preiskovanca poškodovali. Iz preven‑
tivnih razlogov mora zato preiskovanec pred slikanjem z MR odložiti vse
potencialno nevarne kovinske predmete, npr. nakit in uro. Iz poglavja o
elektriki in magnetizmu se tudi spomnimo, da magnetno polje na gibajo‑
če naboje deluje s silo in da lahko spreminjajoče se polje v snovi inducira
električne tokove. V napravi za MR je polje tako veliko, da ti pojavi ni‑
so zanemarljivi, zato ne moremo trditi, da slikanje nima nobenega vpliva
na preiskovanca. Vseeno dolgoletne izkušnje kažejo, da slikanje z MR ne
pušča trajnih posledic. Slikanje povzroča največ težav med samo preiska‑
vo, saj mora preiskovanec dolgo časa negibno ležati v majhnem prostoru
v napravi, poleg tega pa je vklapljanje gradientnih tuljav zelo glasno in
neprijetno.
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Slika 29.4: Shematični prikaz vloge gradienta magnetnega polja pri nastanku pro‑
storske slike. V napravi vklopimo gradient magnetnega polja, zaradi česar se go‑
stota magnetnega polja v napravi v eni smeri malo spreminja (na sliki se spreminja
v smeri x in sicer od 2T do 2,01T, smer gradienta je označena z rdečo pikčasto pu‑
ščico). Zaradi gradienta magnetnega polja imajo jedra na različnih koordinatah x
različne resonančne frekvence in zato tudi med relaksacijo oddajajo radijske valo‑
ve z različnimi frekvencami. Ob prisotnosti gradienta se zato v spektru zaznanega
signala skriva neposredna informacija o položaju posameznih jeder – višja kot je
frekvenca nekega signala, pri večji koordinati x je ta signal izviral. V zgornjem
primeru iz tumorjev v glavi prihaja močnejši signal kot iz zdravih možganov, kar
se bo poznalo v spektru zaznanega signala ‑ vrednosti bodo večje pri frekven‑
cah, ki ustrezajo x koordinatam mesta tumorja. S pomočjo enačbe za resonančno
frekvenco (enačba 29.1) lahko ugotovimo, da frekvenca 85,15Hz ustreza gostoti
magnetnega polja 2T, ki je na koordinati x = 0, frekvenca 85,6Hz ustreza gostoti
magnetnega polja 2,01T, ki je na koordinati x = 30, vmesne frekvence pa ustre‑
zajo vmesim položajem.
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Slika 29.5: Shematični prikaz nastanka prostorske slike. Ob uporabi gradienta v
eni smeri dobimo projekcijo slike tkiv na tisto smer. Če preiskovanca slikamo več‑
krat, pri čemer je gradient polja vsakič orientiran drugače, dobimo serijo projekcij
v različnih smereh. Iz teh projekcij lahko s pomočjo računalnika sestavimo sliko
celotne ravnine.
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Dodatek

Pogoste predpone

faktor predpona simbol faktor predpona simbol

101 deka da 10−1 deci d

102 hekto h 10−2 centi c

103 kilo k 10−3 mili m

106 mega M 10−6 mikro μ

109 giga G 10−9 nano n

1012 tera T 10−12 piko p

10−15 femto f

Tabela 2: Pogoste predpone.
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Grška abeceda

alfa α A eta η H ni ν N tau τ T

beta β B theta θ, ϑ Θ ksi ξ Ξ ipsilon υ Υ

gama γ Γ jota ι I omikron o O fi ϕ, φ Φ

delta δ ∆ kapa κ K pi π Π hi χ X

epsilon ϵ E lambda λ Λ ro ρ P psi ψ Ψ

zeta ζ Z mi µ M sigma σ Σ omega ω Ω

Tabela 3: Grška abeceda. Pri mali črki fi sta možna dva zapisa, ki ju ne smemo
zamenjevati.
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Odvodi in integrali

f(x) f ′(x) f(x)
∫
f(x)dx

C (konstanta) 0 C (konstanta) xC

x 1 x 1
2x

2

xn nxn−1 xn xn+1

n+1

ex ex ex ex

ax ax ln a ax ax

ln a

lnx 1/x 1/x lnx

sinx cosx sinx − cosx

cosx − sinx cosx sinx

Cf(x) Cf ′(x) Cf(x) C
∫
f(x)dx

f(x) + g(x) f ′(x) + g′(x) f(x) + g(x)
∫
f(x)dx+

∫
g(x)dx

f(x)g(x) f ′(x)g(x) + f(x)g′(x)

f(g(x)) f ′((g(x))g′(x)

Tabela 4: Osnovna pravila za računanje odvodov in nedoločenih integralov. Pri
nedoločenih integralih je rezultat določen le do konstante natančno, ki pa smo jo v
zgornjem zapisu izpustili, saj pri se pri računanju določenih integralov pokrajša.
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absorbanca, 20, 315
absorbirana doza, 348
absorpciijski zakon, 19
absorpcijski koeficient, 19, 266,
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absorpcijski zakon, 265
adiabatni procesi, 137
Airyjevi diski, 276
akcijski potencial, 206, 238
akomodacija očesa, 327
aktivni transport, 190
aktivnost, 357
akustična impedanca, 289
akustična pospešitev, 299
akustična senca, 299
ALARA, 349
alometrija, 26
amplituda, 68, 223, 262
anevrizma, 94
angiografija, 339
Arrheniusov diagram, 25
astigmatizem, 326
atenuacijski koeficient, 338

barometrska enačba, 181
barve, 329
Beer‑Lambertov zakon, glej

absorpcijski zakon
Bernoullijeva enačba, 107

Boltzmannov faktor, 180
Boltzmannova konstanta, 119
Boylov zakon, 118
Braggov vrh, 346
brahiterapija, 363
Brownovo gibanje, glej termično

gibanje

centrifuga, 40, 47
Charlesov zakon, 118
Comptonovo sipanje, 337
Coulombov zakon, 198
CT, glej računalniška tomografija

daljnovidnost, 329
dalton, 354
Debyeva dolžina, 212
decibeli, 287
deformacija, 83
dekompresijska bolezen, 178
delci alfa, 346
delci beta, 347
delni tlak, 119
delo, 55, 130
depolarizacija, 239
dielektričnost, 210
difuzijska konstanta, 121, 189
dioptrija, 319
dipol, 203, 241, 250
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disperzija, 308
divergenca žarkov, 264
Donnanovo ravnovesje, 238
Dopplerjev pojav, 301
doza, 348
drugi zakon termodinamike, 151

edem, 170
EEG, glej elektroencefalografija
efektivna napetost, 223
efektivni tok, 223
ehogenost, 296
ehografija, glej ultrazvočno

slikanje
Einthovenov trikotnik, 245
EKG, glej elektrokardiografija
ekviparticijski izrek, 127
ekvipotencialne črte, 201
ekvivalentna doza, 348
elastografija, 88
električna napetost, 202
električna poljska jakost, 199
električni dipol, 203
električni naboj, 196
električni potencial, 199
električni tok, 215, 223
električni udar, 231
električno polje, 199
elektrodna napetost, 241
elektrodni potencial, glej

elektrodna napetost
elektroencefalografija, 239
elektroforeza, 220, 221
elektrokardiografija, 243
elektrolitska raztopina, 211
elektromiografija, 239
elektronvolt, 58
EMG, glej elektromiografija
enačba leče, 321

energija, 55
enote, 10, 18
entalpija, 138
entropija, 144, 147, 148

fahrenheit, 15, 119
Faradayeva kletka, 208, 250
Faradayeva konstanta, 220
faza, 262
fazni diagram vode, 172
fiziološka raztopina, 170, 174, 220
fluorescenca, 312
fosforescenca, 312
foton, 308
Fraunhoferjevo območje, 276
frekvenca, 38, 67, 261
Fresnelovo območje, 276

galvanski člen, 242
Geiger‑Müllerjev števec, 351
gibalna količina, 48
gibljivost nabojev, 219
glasnost, 291
Goldmanova enačba, 238
gorišče, 319
gostota, 77
gostota energijskega toka, 264
gostota magnetnega polja, 249
govor, 291
gradient, 370
Guy‑Lussacov zakon, 118

Hagen–Poiseuilleva enačba, 106
Henryjev zakon, 175
Hessov zakon, 139
hidrostatski tlak, 80
hiperkalemija, 237
hitrost, 34
Hookov zakon, 45, 85
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idealne tekočine, 107
idealni plin, 119, 128
impedanca, 229
interferenca, 271
ionizirajoča sevanja, 344
ionizirajoče sevanje, 311
ionska moč, 213
ionska raztopina, 211
izmenični tok, 223
izoelektrična točka, 198
izotermni procesi, 136
izotop, 353
izparilna toplota, 133

jakost električnega polja, 199
jakost zvoka, 287
jedrski razpad, 355

kalorija, 58, 143
kalorimetrija, 132, 135
kapaciteta kondenzatorja, 206
kapilarni efekt, 96
kavitacija, 303
kelvin, 119
kemijski potencial, 161
koherenca, 273
kompenzacija UZ slike, 299
kondenzator, 205, 225
kontaktni kot, 95
konvergenca žarkov, 264
Korotkovovi zvoki, 112
kotna hitrost, 37
kotni pospešek, 37
kozmični žarki, 345
kratkovidnost, 329
krogelni val, 262
kromatična aberacija, 326
kroženje, 37
krožna frekvenca, 223, 262

krožni val, 262
krvni obtok, 110
kvadratni zakon upora, 101

laminarni tok, 98
Laplaceov zakon, 93
Larmorjeva frekvenca, 365
laser, 314
lastna frekvenca nihala, 68
leča, 318
linearni zakon upora, 101, 222
lomni zakon, 269
lomnost leče, 319
longitudinalno valovanje, 263
ločljivost mikroskopa, 325
ločljivost ultrazvoka, 300
lupa, 322

magnetna indukcija, 257
magnetna resonanca, 254, 364
magnetni dipol, 250
magnetno polje, 249
magnetoencefalografija, 252
magnetokardiografija, 252
masna enota, 354
masni spektrometer, 256
masno število, 353
MEG, glej magnetokardiografija
membranski potencial, 233
mikroskop, 324
minutni volumen srca, 104
MKG, glej magnetokardiografija
molekularni motorji, 61
moč, 58, 216
močenje, 95
MR, 364
mrežnica, 328

napake leč, 326
navor, 45
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neobrnljivi procesi, 145
Nernstova enačba, 236
nihajni čas, 67
nihanje, 66
nivo jakosti zvoka, 287
notranja energija, 126
nuklearna medicina, 352
nukleon, 353
numerična apertura, 325

obhodni čas, 38
obremenitev, 83
obrnljivi procesi, 145
odbojni zakon, 269
Ohmov zakon, 106, 190, 216
oko, 326
olajšani transport, 190
onkotski tlak, 169
optika, 318
optično vlakno, 270
osmozni tlak, 167
otoakustična emisija, 292

parcialni tlak, glej delni tlak
Pascalov zakon, 79
permeabilnost membrane, 189
PET, glej pozitronska emisijska

tomografija
pH, 197
piezoelektrični kristal, 294
plinska enačba, 118
podajnost, 86
pospešek, 34
povečava leče, 321
povečava lupe, 323
povečava mikroskopa, 324
povečevalno steklo, 322
površinska napetost, 90
pozitronska emisijska

tomografija, 360

prekomembranski potencial, glej
membranski potencial

prepustnost membrane, 189
prosta entalpija, 155
prostorninski pretok, 104
prvi zakon termodinamike, 130
pulzni oksimeter, 316

radialni pospešek, 38
radioaktivnost, 355
radiofarmak, 359
ravni val, 262
ravnovesje, 49, 62
razpadna konstanta, 356
razpolovna debelina, 19, 266, 297
razpolovni čas, 356
raztapljanje plinov, 175
računalniška tomografija, 341
reaktanca, 225
relaksacijski čas, 368
relativni biološki učinek, 348
rentgen, 331, 345
resonanca, 71, 281
resonator, 281
Reynoldsovo število, 102

scintigrafija, 360
scintilacijski detektor, 350
sedimentacija, 103
senčenje naboja, 212
sferična aberacija, 326
sfigmomanometer, 82
sila, 42
sipanje, 279
slišne frekvence, 284
sluh, 291
Snellov zakon, glej lomni zakon
sonografija, glej ultrazvočno

slikanje
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specifična prevodnost, 217
specifična toplota, 133
specifična upornost, 217
SPECT, 360
spekter, 281
spekter črnega telesa, 314
spektrofotometer, 315
spektroskopija, 72, 315
spirometrija, 32
standardni bipolarni odvodi, 243
Stefanov zakon, 313
stenoza, 105
stisljivost, 79
stoječe valovanje, 280
Stokesov zakon upora, glej

linearni zakon upora
stopnje prostosti, 29
strižna napetost, 79
strižni modul, 85
surfaktant, 92

talilna toplota, 133
temperatura, 117
temperaturni raztezek, 123
termična energija, 127
termično gibanje, 117
termično sevanje, 313
termodinamika, 115
termometer, 125
težišče, 53
tlak, 78
TMS, glej transkranialna

magnetna stimulacija
toničnost, 168
toplota, 130

toplotna kapaciteta, 132
toplotna prevodnost, 187
toplotni tok, 186
topnostni koeficient, 175
totalni odboj, 270
transkranialna magnetna

stimulacija, 258
transverzalno valovanje, 263
trenje, 44, 57
tuljava, 254
turbulentni tok, 98

uklon, 275
uklonska mrežica, 315
ultrazvok, 284
ultrazvočno slikanje, 294
unipolarni odvod, 247

valovna dolžina, 261
viskoelastičnost, 113
viskoznost, 99, 121, 222
vlažnost zraka, 173
vrstno število, 353
vrtenje, 37
vrtilna količina, 48
vzgon, 81
vzvoj, 85

Youngov modul, 85

zeta potencial, 214
zorni kot, 323
zvijanje proteinov, 181
zvok, 284

žarki gama, 345
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